50,563 research outputs found

    Estimative for the size of the compactification radius of a one extra dimension Universe

    Get PDF
    In this work, we use the Casimir effect to probe the existence of one extra dimension. We begin by evaluating the Casimir pressure between two plates in a M4×S1M^4\times S^1 manifold, and then use an appropriate statistical analysis in order to compare the theoretical expression with a recent experimental data and set bounds for the compactification radius

    Newtonian Perturbations on Models with Matter Creation

    Full text link
    Creation of Cold Dark Matter (CCDM) can macroscopically be described by a negative pressure, and, therefore, the mechanism is capable to accelerate the Universe, without the need of an additional dark energy component. In this framework we discuss the evolution of perturbations by considering a Neo-Newtonian approach where, unlike in the standard Newtonian cosmology, the fluid pressure is taken into account even in the homogeneous and isotropic background equations (Lima, Zanchin and Brandenberger, MNRAS {\bf 291}, L1, 1997). The evolution of the density contrast is calculated in the linear approximation and compared to the one predicted by the Λ\LambdaCDM model. The difference between the CCDM and Λ\LambdaCDM predictions at the perturbative level is quantified by using three different statistical methods, namely: a simple χ2\chi^{2}-analysis in the relevant space parameter, a Bayesian statistical inference, and, finally, a Kolmogorov-Smirnov test. We find that under certain circumstances the CCDM scenario analysed here predicts an overall dynamics (including Hubble flow and matter fluctuation field) which fully recovers that of the traditional cosmic concordance model. Our basic conclusion is that such a reduction of the dark sector provides a viable alternative description to the accelerating Λ\LambdaCDM cosmology.Comment: Physical Review D in press, 10 pages, 4 figure

    The importance of target audiences in the design of training actions

    Get PDF
    This paper describes the process of definition, conceptualization and implementation of a business course addressed for logistic and industrial managers. This course was designed using a blended methodology, with training in classroom, visits to enterprises and self- study, supported by an eLearning platform. The aim of this work is to create an opportunity to reflect about the decisions and strategies implemented and point future developments

    State reconstruction of finite dimensional compound systems via local projective measurements and one-way classical communication

    Get PDF
    For a finite dimensional discrete bipartite system, we find the relation between local projections performed by Alice, and Bob post-selected state dependence on the global state submatrices. With this result the joint state reconstruction problem for a bipartite system can be solved with strict local projections and one-way classical communication. The generalization to multipartite systems is straightforward.Comment: 4 pages, 1 figur

    Degree-dependent intervertex separation in complex networks

    Get PDF
    We study the mean length (k)\ell(k) of the shortest paths between a vertex of degree kk and other vertices in growing networks, where correlations are essential. In a number of deterministic scale-free networks we observe a power-law correction to a logarithmic dependence, (k)=Aln[N/k(γ1)/2]Ckγ1/N+...\ell(k) = A\ln [N/k^{(\gamma-1)/2}] - C k^{\gamma-1}/N + ... in a wide range of network sizes. Here NN is the number of vertices in the network, γ\gamma is the degree distribution exponent, and the coefficients AA and CC depend on a network. We compare this law with a corresponding (k)\ell(k) dependence obtained for random scale-free networks growing through the preferential attachment mechanism. In stochastic and deterministic growing trees with an exponential degree distribution, we observe a linear dependence on degree, (k)AlnNCk\ell(k) \cong A\ln N - C k. We compare our findings for growing networks with those for uncorrelated graphs.Comment: 8 pages, 3 figure
    corecore