3,301 research outputs found

    Early effects of estrogen on the rat ventral prostate

    Get PDF
    Complex interactions between androgen and estrogen (E2) regulate prostatic development and physiology. We analyzed the early effects of a high single dose of E2 (25 mg/kg body weight) and castration (separately or combined) on the adult 90-day-old male Wistar rat ventral prostate. Androgen levels, prostate weight, and the variation in the relative and absolute volume of tissue compartments and apoptotic indices were determined for 7 days. Castration and exogenous E2 markedly reduced ventral prostate weight (about 50% of the control), with a significant reduction in the epithelial compartment and increased stroma. The final volume of the epithelium was identical at day 7 for all treatments (58.5% of the control). However, E2 had an immediate effect, causing a reduction in epithelial volume as early as day 1. An increase in smooth muscle cell volume resulted from the concentration of these cells around the regressing epithelium. The treatments resulted in differential kinetics in epithelial cell apoptosis. Castration led to a peak in apoptosis at day 3, with 5% of the epithelial cells presenting signs of apoptosis, whereas E2 caused an immediate increase (observed on day 1) and a sustained (up to day 7) effect. E2 administration to castrated rats significantly increased the level of apoptosis by day 3, reaching 9% of the epithelial cells. The divergent kinetics between treatments resulted in the same levels of epithelial regression after 7 days (~30% of control). These results show that E2 has an immediate and possibly direct effect on the prostate, and anticipates epithelial cell death before reducing testosterone to levels as low as those of castrated rats. In addition, E2 and androgen deprivation apparently cause epithelial cell death by distinct and independent pathways.48749

    Inter- and intra-annual variability of wave energy in Northern mainland Portugal: Application to the HiWave-5 project

    Get PDF
    Ocean wave energy capacity has been pointed out as one of the unexplored renewable energy sources to help reach net zero carbon emissions by 2050, contributing to meeting the European Green Deal targets. However, despite the broad range of wave energy converter technologies already developed in a sustainable and economic model, there is still a lack of structured projects with high performance beyond the prototype stage. This paper investigates the potential for large-scale electricity production by the innovative HiWave-5 project in Aguçadoura (on the Northern coast of mainland Portugal). Wind–wave data (1950–2020) from the ERA5 reanalysis model are used to estimate inter- and intra-annual wave energy variability in Aguçadoura. ERA5 data is compared with field wind–wave data recorded between 2012–2019 near the study area. A mean wave power resource of 25.84 kW/m is obtained, for a possible device capture equal to 119.45 kW, despite a considerable intra-annual variability (ranging between 8.03 and 47.57 kW/m) and inter-annual variability (between 18.29 and 35.47 kW/m). Results show that local wave conditions do not substantially compromise the absolute performance of the device, given its survival limitations to adverse conditions. Considering a Levelized Cost of Energy of around €60/MWh, an annual investment of €62 885 is estimated, tending to meet targets for large sustainable electricity generation with the exponential growth expected until 2030, aided by the increase of devices in an energy farm concept. Wave power resources estimated using ERA5 data can underestimate about 7.20% values obtained with the wave buoy data.The second and third authors thank FCT/MCTES for the financial support to CESAM, Portugal (UIDP/50017/2020+UIDB/50017/ 2020+ LA/P/0094/2020), through national funds. The authors also want to thank the anonymous reviewers for their useful comments and suggestions.info:eu-repo/semantics/publishedVersio

    Effects Of Crossed Electric And Magnetic Fields On The Electronic And Excitonic States In Bulk Gaas And Gaas Ga1-x Alx As Quantum Wells

    Get PDF
    The variational procedure in the effective-mass and parabolic-band approximations is used in order to investigate the effects of crossed electric and in-plane magnetic fields on the electronic and exciton properties in semiconductor heterostructures. Calculations are performed for bulk GaAs and GaAs Ga1-x Alx As quantum wells, for applied magnetic fields parallel to the layers and electric fields in the growth direction, and it is shown that the combined effects on the heterostructure properties of the applied crossed electric and magnetic fields and the direct coupling between the center-of-mass and internal exciton motions may be dealt with via a simple parameter representing the spatial distance between the centers of the electron and hole magnetic parabolas. Exciton properties are analyzed by using a simple hydrogenlike envelope excitonic wave function and present theoretical results are found in fair agreement with available experimental measurements on the diamagnetic shift of the photoluminescence peak position of GaAs Ga1-x Alx As quantum wells under in-plane magnetic fields. © 2007 The American Physical Society.753Whittaker, D.M., Fisher, T.A., Simmonds, P.E., Skolnick, M.S., Smith, R.S., (1991) Phys. Rev. Lett., 67, p. 887. , PRLTAO 0031-9007 10.1103/PhysRevLett.67.887Fritze, M., Perakis, I.E., Getter, A., Knox, W., Goossen, K.W., Cunningham, J.E., Jackson, S.A., (1996) Phys. Rev. Lett., 76, p. 106. , PRLTAO 0031-9007 10.1103/PhysRevLett.76.106Butov, L.V., Mintsev, A.V., Lozovik, Y.E., Campman, K.L., Gossard, A.C., (2000) Phys. Rev. B, 62, p. 1548. , PRBMDO 0163-1829 10.1103/PhysRevB.62.1548Parlangeli, A., Christianen, P.C.M., Maan, J.C., Soerensen, C.B., Lindelof, P.E., (2000) Phys. Status Solidi a, 178, p. 45. , PSSABA 0031-8965 10.1002/1521-396X(200003)178:13.3. CO;2-WParlangeli, A., Christianen, P.C.M., Maan, J.C., Tokatly, I.V., Soerensen, C.B., Lindelof, P.E., (2000) Phys. Rev. B, 62, p. 15323. , PRBMDO 0163-1829 10.1103/PhysRevB.62.15323Orlita, M., Grill, R., Zvára, M., Döhler, G.H., Malzer, S., Byszewski, M., Soubusta, J., (2004) Phys. Rev. B, 70, p. 075309. , PRBMDO 0163-1829 10.1103/PhysRevB.70.075309Butov, L.V., Lai, C.W., Chemla, D.S., Lozovik, Y.E., Campman, K.L., Gossard, A.C., (2001) Phys. Rev. Lett., 87, p. 216804. , PRLTAO 0031-9007 10.1103/PhysRevLett.87.216804Butov, L.V., (2004) J. Phys.: Condens. Matter, 16, p. 1577. , JCOMEL 0953-8984 10.1088/0953-8984/16/50/R02Oberli, D.Y., Böhm, G., Weimann, G., Brum, J.A., (1994) Phys. Rev. B, 49, p. 5757. , PRBMDO 0163-1829 10.1103/PhysRevB.49.5757Feldmann, J., Peter, G., Göbel, E.O., Dawson, P., Moore, K., Foxon, C., Elliott, R.J., (1987) Phys. Rev. Lett., 59, p. 2337. , PRLTAO 0031-9007 10.1103/PhysRevLett.59.2337Houdré, R., Weisbuch, C., Stanley, R.P., Oesterle, U., Pellandini, P., Ilegems, M., (1994) Phys. Rev. Lett., 73, p. 2043. , PRLTAO 0031-9007 10.1103/PhysRevLett.73.2043Tredicucci, A., Chen, Y., Pellegrini, V., Börger, M., Sorba, L., Beltram, F., Bassani, F., (1995) Phys. Rev. Lett., 75, p. 3906. , PRLTAO 0031-9007 10.1103/PhysRevLett.75.3906Ashkinadze, B.M., Linder, E., Cohen, E., Pfeiffer, L.N., (2005) Phys. Rev. B, 71, p. 045303. , PRBMDO 0163-1829 10.1103/PhysRevB.71.045303Gorkov, L.P., Dzyaloshinskii, I.E., (1967) Zh. Eksp. Teor. Fiz., 53, p. 717. , ZETFA7 0044-4510Gorkov, L.P., Dzyaloshinskii, I.E., (1968) Sov. Phys. JETP, 26, p. 449. , SPHJAR 0038-5646Paquet, D., Rice, T.M., Ueda, K., (1985) Phys. Rev. B, 32, p. 5208. , PRBMDO 0163-1829 10.1103/PhysRevB.32.5208Dignam, M.M., Sipe, J.E., (1992) Phys. Rev. B, 45, p. 6819. , PRBMDO 0163-1829 10.1103/PhysRevB.45.6819Imamoglu, A., (1996) Phys. Rev. B, 54, p. 14285. , PRBMDO 0163-1829 10.1103/PhysRevB.54.R14285Lozovik, Y.E., Ruvinskii, A.M., (1997) Zh. Eksp. Teor. Fiz., 112, p. 1791. , ZETFA7 0044-4510Lozovik, Y.E., Ruvinskii, A.M., (1997) JETP, 85, p. 979. , JTPHES 1063-7761 10.1134/1.558404Lozovik, Y.E., Ovchinnikov, I.V., Yu. Volkov, S., Butov., L.V., Chemla, D.S., (2002) Phys. Rev. B, 65, p. 235304. , PRBMDO 0163-1829 10.1103/PhysRevB.65.235304Lozovik, Y.E., Yu. Volkov, S., (2003) Zh. Eksp. Teor. Fiz., 123, p. 635. , ZETFA7 0044-4510Lozovik, Y.E., Yu. Volkov, S., (2003) JETP, 96, p. 564. , JTPHES 1063-7761 10.1134/1.1567431Gorbatsevich, A.A., Tokatly, I.V., (1998) Semicond. Sci. Technol., 13, p. 288. , SSTEET 0268-1242 10.1088/0268-1242/13/3/007Chang, K., Peeters, F.M., (2001) Phys. Rev. B, 63, p. 153307. , PRBMDO 0163-1829 10.1103/PhysRevB.63.153307Chang, K., Xia, J.B., Wu, H.B., Feng, S.L., (2002) Appl. Phys. Lett., 80, p. 1788. , APPLAB 0003-6951 10.1063/1.1459491Chang, K., Jiang, D.S., Xia, J.B., (2004) J. Appl. Phys., 95, p. 752. , JAPIAU 0021-8979 10.1063/1.1631748Kaputkina, N.E., Lozovik, Y.E., (2002) Physica e (Amsterdam), 12, p. 323. , PELNFM 1386-9477 10.1016/S1386-9477(01)00356-3Niculescu, E.C., (2003) Superlattices Microstruct., 33, p. 103. , SUMIEK 0749-6036Reyes-Gómez, E., Oliveira, L.E., De Dios-Leyva, M., (2005) Phys. Rev. B, 71, p. 045316. , PRBMDO 0163-1829 10.1103/PhysRevB.71.045316Coli, G., Bajaj, K.K., (2000) Phys. Rev. B, 61, p. 4714. , PRBMDO 0163-1829 10.1103/PhysRevB.61.4714Antonelli, A., Cen, J., Bajaj, K.K., (1996) Semicond. Sci. Technol., 11, p. 74. , SSTEET 0268-1242 10.1088/0268-1242/11/1/017Latgé, A., Porras-Montenegro, N., De Dios-Leyva, M., Oliveira, L.E., (1996) Phys. Rev. B, 53, p. 10160. , PRBMDO 0163-1829 10.1103/PhysRevB.53.10160Barbosa, L.H.M., Latgé, A., De Dios-Leyva, M., Oliveira, L.E., (1996) Solid State Commun., 98, p. 215. , SSCOA4 0038-1098 10.1016/0038-1098(96)00037-3Ribeiro, F.J., Latgé, A., Oliveira, L.E., (1996) J. Appl. Phys., 80, p. 2536. , JAPIAU 0021-8979 10.1063/1.363041Latgé, A., Porras-Montenegro, N., De Dios-Leyva, M., Oliveira, L.E., (1998) Phys. Status Solidi B, 210, p. 655. , PSSBBD 0370-1972 10.1002/(SICI)1521-3951(199812)210:23.3.CO;2-4Latgé, A., Porras-Montenegro, N., Oliveira, L.E., (1992) Phys. Rev. B, 45, p. 6742. , PRBMDO 0163-1829 10.1103/PhysRevB.45.6742Oliveira, L.E., Porras-Montenegro, N., Latgé, A., (1993) Phys. Rev. B, 47, p. 13864. , PRBMDO 0163-1829 10.1103/PhysRevB.47.13864Duque, C.A., Beltrán, C.L., Montes, A., Porras-Montenegro, N., Oliveira, L.E., (2000) Phys. Rev. B, 61, p. 9936. , PRBMDO 0163-1829 10.1103/PhysRevB.61.9936Herbert Li, E., (2000) Physica e (Amsterdam), 5, p. 215. , PELNFM 1386-9477 10.1016/S1386-9477(99)00262-3Gerlach, B., Wüsthoff, J., Dzero, M.O., Smondyrev, M.A., (1998) Phys. Rev. B, 58, p. 10568. , PRBMDO 0163-1829 10.1103/PhysRevB.58.10568Xia, J.-B., Fan, W.-J., (1989) Phys. Rev. B, 40, p. 8508. , PRBMDO 0163-1829 10.1103/PhysRevB.40.8508De Dios-Leyva, M., Bruno-Alfonso, A., Oliveira, L.E., (1997) J. Phys.: Condens. Matter, 9, p. 1005. , JCOMEL 0953-8984 10.1088/0953-8984/9/5/007Reyes-Gómez, E., Matos-Abiague, A., Perdomo-Leiva, C.A., De Dios-Leyva, M., Oliveira, L.E., (2000) Phys. Rev. B, 61, p. 13104. , PRBMDO 0163-1829 10.1103/PhysRevB.61.13104Chaudhuri, S., Bajaj, K.K., (1984) Solid State Commun., 52, p. 967. , SSCOA4 0038-1098 10.1016/0038-1098(84)90489-7Chaudhuri, S., Bajaj, K.K., (1984) Phys. Rev. B, 29, p. 1803. , PRBMDO 0163-1829 10.1103/PhysRevB.29.180

    A 2d Honeycomb Photonic Crystal Under Applied Magnetic Fields

    Get PDF
    The band-structure properties of a photonic two-dimensional honeycomb lattice formed by cylindrical semiconductor shell rods with dielectric permitivities ε 1 and ε 2, and embedded in a background with permitivity ε 3, is studied by using an standard plane-wave expansion. The properties of bandgaps and density of states, considering dispersive dielectric responses, are investigated together with the possibility of fabricating systems with tunable photonic bandgaps, due to the Voigt magneto-optical effect, under the influence of an external magnetic field. © 2008 SPIE.7138J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, 1995E. Istrate and E. H. Sargent, Rev. Mod. Phys. 78, 455 (2006)Xu, C., Hu, X., Li, Y., Liu, X., Fu, R., Zi, J., (2003) Phys. Rev. B, 68, p. 193201Kee, C.-S., Kim, J.-E., Park, H.Y., Park, I., Lim, H., (2000) Phys. Rev. B, 61, p. 15523Anderson, C.M., Giapis, K.P., (1996) Phys. Rev. Lett, 77, p. 2949Rezaei, B., Kalafi, M., (2006) Optics Commun, 266, p. 159Busch, K., John, S., (1999) Phys. Rev. Lett, 83, p. 967S. B. Cavalcanti, M. de Dios-Leyva, E. Reyes-Gómez, and L. E. Oliveira, Phys. Rev. B 74, 153102 (2006)ibid., Phys. Rev. E 75, 026607 (2007)Ho, K.M., Chan, C.T., Soukoulis, C.M., (1990) Phys. Rev. Lett, 65, p. 315

    Controlling quantum entanglement through photocounts

    Get PDF
    We present a protocol to generate and control quantum entanglement between the states of two subsystems (the system S{\cal S}) by making measurements on a third subsystem (the monitor M{\cal M}), interacting with S{\cal S}. For the sake of comparison we consider first an ideal, or instantaneous projective measurement, as postulated by von Neumann. Then we compare it with the more realistic or generalized measurement procedure based on photocounting on M{\cal M}. Further we consider that the interaction term (between S{\cal S} and M{\cal M}) contains a quantum nondemolition variable of S{\cal S} and discuss the possibility and limitations for reconstructing the initial state of S{\cal S} from information acquired by photocounting on M{\cal M}.Comment: 12 pages, 3 figures, accepted for publication in Phys. Rev

    Synaptic Transmission: Looking for Clues to Autism Spectrum Disorders (ASD) Etiology in Copy Number Variants Containing Synaptic Genes

    Get PDF
    Copy Number Variants (CNVs) play an important role in susceptibility to ASD, often mediated by the deletion or duplication of genes involved in synaptic structure and function. Increasing evidence suggests a central role for defects in synaptic structure and function in the pathogenesis of non-syndromic ASD. In this study we tested the hypothesis of an enrichment in CNVs encompassing synaptic transmission genes in ASDThis work was supported by the fellowships SFRH/BD/79081/2011 to BO, SFRH/BPD/74739/2010 to ICC and SFRH/BPD/64281/2009 to CC from Fundação para a Ciência e a Tecnologia (FCT; Portugal)

    Copy number variants involving components of the glutamatergic synaptic pathway in ASD patients

    Get PDF
    This work was supported by the fellowships SFRH/BD/79081/2011 to BO, SFRH/BPD/74739/2010 to ICC and SFRH/BPD/64281/2009 to CC from Fundação para a Ciência e a Tecnologia (FCT; Portugal).Copy Number Variants (CNVs) play an important role in susceptibility to Autism Spectrum Disorders (ASD), in particular when deleting or duplicating genes involved in synaptic structure and function such as glutamatergic synapse genes. Identifying CNVs of etiologic relevance for ASD that include glutamatergic genes may contribute to the understanding of glutamate-related pathogenic mechanisms in this disorder

    Effects Of Non-parabolicity And In-plane Magnetic Fields On The Cyclotron Effective Mass And G -factor In Gaas-(ga,al)as Quantum Wells

    Get PDF
    The envelope-function approach is used to theoretically study the effects of in-plane magnetic fields on the cyclotron effective mass and Landé g -factor associated to conduction electrons in single GaAs-(Ga,Al)As quantum wells. Non-parabolic and anisotropy effects are included in the calculations within the Ogg-McCombe effective Hamiltonian to describe the electron states in the semiconductor heterostructure. The electronic structure and both the cyclotron effective mass and Landé g -factor were obtained, by expanding the corresponding envelope wave functions in terms of harmonic-oscillator wave functions, as functions of the in-plane magnetic field, cyclotron orbit-center position, and quantum-well widths. This procedure allows us to consider the different terms in the Hamiltonian on equal footing, avoiding therefore the use of approximate methods to obtain the envelope wave functions and the corresponding energy spectrum. Results obtained for the Landé g -factor were found in quite good agreement with available experimental measurements. © 2006 The American Physical Society.738Bode, M., Getzlaff, M., Wiesendanger, R., (1998) Phys. Rev. Lett., 81, p. 4256. , PRLTAO 0031-9007 10.1103/PhysRevLett.81.4256Heinze, S., Bode, M., Kubetzka, A., Pietzsch, O., Nie, X., Blugel, S., Wiesendanger, R., (2000) Science, 288, p. 1805. , SCIEAS 0036-8075 10.1126/science.288.5472.1805Nussinov, Z., Crommie, M.F., Balatsky, A.V., (2003) Phys. Rev. B, 68, p. 085402. , PRBMDO 0163-1829 10.1103/PhysRevB.68.085402Nielsen, M.A., Chuang, I.L., (2000) Quantum Computation and Quantum Information, , Cambridge University Press, CambridgeSalis, G., Kato, Y.K., Ensslin, K., Driscol, D.C., Gossard, A.C., Awschalom, D.D., (2001) Nature, 414, p. 619. , NATUAS 0028-0836 10.1038/414619aZutic, I., Fabian, J., Das Sarma, S., (2004) Rev. Mod. Phys., 76, p. 323. , RMPHAT 0034-6861 10.1103/RevModPhys.76.323Engel, H.-A., Loss, D., (2005) Science, 309, p. 586. , SCIEAS 0036-8075 10.1126/science.1113203Osório, F.A.P., Degani, M.H., Hipólito, O., (1988) Phys. Rev. B, 38, p. 8477. , PRBMDO. 0163-1829. 10.1103/PhysRevB.38.8477Nicholas, R.J., Hopkins, M.A., Barnes, D.J., Brummell, M.A., Sigg, H., Heitmann, D., Ensslin, K., Weimann, G., (1989) Phys. Rev. B, 39, p. 10955. , PRBMDO 0163-1829 10.1103/PhysRevB.39.10955Huant, S., Mandray, A., Etienne, B., (1992) Phys. Rev. B, 46, p. 2613. , PRBMDO 0163-1829 10.1103/PhysRevB.46.2613Cole, B.E., Chamberlain, J.M., Henini, M., Cheng, T., Batty, W., Wittlin, A., Perenboom, J.A.A.J., Singleton, J., (1997) Phys. Rev. B, 55, p. 2503. , PRBMDO 0163-1829 10.1103/PhysRevB.55.2503Johnson, G.R., Kana-Ah, A., Cavenett, B.C., Skolnick, M.S., Baas, S.J., (1987) Semicond. Sci. Technol., 2, p. 182. , SSTEET 0268-1242 10.1088/0268-1242/2/3/010Dobers, M., Klitzing K, V., Weimann, G., (1988) Phys. Rev. B, 38, p. 5453. , PRBMDO 0163-1829 10.1103/PhysRevB.38.5453Snelling, M.J., Flinn, G.P., Plaut, A.S., Harley, R.T., Tropper, A.C., Eccleston, R., Phillips, C.C., (1991) Phys. Rev. B, 44, p. 11345. , PRBMDO 0163-1829 10.1103/PhysRevB.44.11345Heberle, A.P., Rühle, W.W., Ploog, K., (1994) Phys. Rev. Lett., 72, p. 3887. , PRLTAO. 0031-9007. 10.1103/PhysRevLett.72.3887Hannak, R.M., Oestreich, M., Heberle, A.P., Ruhle, W.W., Kohler, K., (1995) Solid State Commun., 93, p. 313. , SSCOA4 0038-1098 10.1016/0038-1098(94)00784-5Le Jeune, P., Robart, D., Marie, X., Amand, T., Brosseau, M., Barrau, J., Kalevich, V., Rodichev, D., (1997) Semicond. Sci. Technol., 12, p. 380. , SSTEET 0268-1242 10.1088/0268-1242/12/4/006Malinowski, A., Harley, R.T., (2000) Phys. Rev. B, 62, p. 2051. , PRBMDO 0163-1829 10.1103/PhysRevB.62.2051Sapega, V.F., Ruf, T., Cardona, M., Ploog, K., Ivchenko, E.L., Mirlin, D.N., (1994) Phys. Rev. B, 50, p. 2510. , PRBMDO 0163-1829 10.1103/PhysRevB.50.2510Medeiros-Ribeiro, G., Pinheiro, M.V.B., Pimentel, V.L., Marega, E., (2002) Appl. Phys. Lett., 80, p. 4229. , APPLAB 0003-6951 10.1063/1.1483112Lindermann, S., Ihn, T., Heinzel, T., Zwerger, W., Ensslin, K., Maranowski, K., Gossard, A.C., (2002) Phys. Rev. B, 66, p. 195314. , PRBMDO 0163-1829 10.1103/PhysRevB.66.195314Hanson, R., Witkamp, B., Vandersypen, L.M.K., Willems Van Beveren, L.H., Elzerman, J.M., Kouwenhoven, L.P., (2003) Phys. Rev. Lett., 91, p. 196802. , PRLTAO 0031-9007 10.1103/PhysRevLett.91.196802Maude, D.K., Potemski, M., Portal, J.C., Henini, M., Eaves, L., Hill, G., Pate, M.A., (1996) Phys. Rev. Lett., 77, p. 4604. , PRLTAO 0031-9007 10.1103/PhysRevLett.77.4604Kato, Y.K., Myers, R.C., Driscol, D.C., Gossard, A.C., Levy, J., Awschalom, D.D., (2003) Science, 299, p. 1201. , SCIEAS 0036-8075 10.1126/science.1080880Kato, Y.K., Myers, R.C., Gossard, A.C., Awschalom, D.D., (2004) Science, 306, p. 1910. , SCIEAS 0036-8075 10.1126/science.1105514Bracker, A.S., Stinaff, E.A., Gammon, D., Ware, M.E., Tischler, J.G., Shabaev, A., Efros, A.L., Merkulov, I.A., (2005) Phys. Rev. Lett., 94, p. 047402. , PRLTAO 0031-9007 10.1103/PhysRevLett.94.047402Rashba, E.I., Efros, A.L., (2003) Phys. Rev. Lett., 91, p. 126405. , PRLTAO 0031-9007 10.1103/PhysRevLett.91.126405De Sousa, R., Das Sarma, S., (2003) Phys. Rev. B, 68, p. 155330. , PRBMDO 0163-1829 10.1103/PhysRevB.68.155330Prado, S.J., Trallero-Giner, C., Alcalde, A.M., Lopez-Richard, V., Marques, G.E., (2004) Phys. Rev. B, 69, p. 201310. , PRBMDO 0163-1829 10.1103/PhysRevB.69.201310Destefani, C.F., Ulloa, S.E., (2005) Phys. Rev. B, 71, p. 161303. , PRBMDO 0163-1829 10.1103/PhysRevB.71.161303Ogg, N.R., (1966) Proc. Phys. Soc. London, 89, p. 431. , PPSOAU 0370-1328 10.1088/0370-1328/89/2/326McCombe, B.O., (1969) Phys. Rev., 181, p. 1206. , PHRVAO 0031-899X 10.1103/PhysRev.181.1206Maan, J.C., (1987) Festkörperprobleme, 27, p. 137. , edited by P. Grosse. Advances in Solid State Physics, Vol. Vieweg, BraunschweigMaan, J.C., (1988) Surf. Sci., 196, p. 518. , SUSCAS 0039-6028 10.1016/0039-6028(88)90735-2Platero, G., Altarelli, M., (1989) Phys. Rev. B, 39, p. 3758. , PRBMDO 0163-1829 10.1103/PhysRevB.39.3758Braun, M., Rössler, U., (1985) J. Phys. C, 18, p. 3365. , JPSOAW. 0022-3719. 10.1088/0022-3719/18/17/013Golubev, V.G., Ivanov-Omskii, V.I., Minervin, I.G., Osutin, A.V., Polyakov, D.G., (1985) Sov. Phys. JETP, 61, p. 1214. , SPHJAR 0038-5646Sabín Del Valle, J., López-Gondar, J., De Dios-Leyva, M., (1989) Phys. Status Solidi B, 151, p. 127. , PSSBBD. 0370-1972Bruno-Alfonso, A., Diago-Cisneros, L., De Dios-Leyva, M., (1995) J. Appl. Phys., 77, p. 2837. , JAPIAU 0021-8979 10.1063/1.359540Li, E.H., (2000) Physica e (Amsterdam), 5, p. 215. , PELNFM 1386-9477 10.1016/S1386-9477(99)00262-3Hermann, C., Weisbuch, C., (1977) Phys. Rev. B, 15, p. 823. , PLRBAQ 0556-2805 10.1103/PhysRevB.15.823Dresselhaus, G., (1955) Phys. Rev., 100, p. 580. , PHRVAO 0031-899X 10.1103/PhysRev.100.580Casey Jr., R.C., (1978) J. Appl. Phys., 49, p. 3684. , JAPIAU 0021-8979 10.1063/1.325421Dingle, R., (1975) Festkörperprobleme XV, p. 21. , edited by H. J. Queisser. Pergamon, BraunschweigMiller, R.C., Kleinman, D.A., Gossard, A.C., (1984) Phys. Rev. B, 29, p. 7085. , PRBMDO 0163-1829 10.1103/PhysRevB.29.7085Wang, W., Mendez, E.E., Stern, F., (1984) Appl. Phys. Lett., 45, p. 639. , APPLAB 0003-6951 10.1063/1.95339Lommer, G., Malcher, F., Rössler, U., (1985) Phys. Rev. B, 32, p. 6965. , PRBMDO. 0163-1829. 10.1103/PhysRevB.32.6965Malcher, F., Lommer, G., Rössler, U., (1986) Superlattices Microstruct., 2, p. 267. , SUMIEK. 0749-6036. 10.1006/spmi.1996.0195Lommer, G., Malcher, F., Rössler, U., (1986) Superlattices Microstruct., 2, p. 273. , SUMIEK. 0749-6036. 10.1016/0749-6036(86)90031-5Kainz, J., Rössler, U., Winkler, R., (2003) Phys. Rev. B, 68, p. 075322. , PRBMDO. 0163-1829. 10.1103/PhysRevB.68.075322Könemann, J., Haug, R.J., Maude, D.K., Falko, V.I., Altshuler, B.L., (2005) Phys. Rev. Lett., 94, p. 226404. , PRLTAO. 0031-9007. 10.1103/PhysRevLett.94.226404D'Yakonov, M.I., Perel, V.I., (1971) Sov. Phys. Solid State, 13, p. 3023. , SPSSA7 0038-5654Kim, N., La Rocca, G.C., Rodriguez, S., (1989) Phys. Rev. B, 40, p. 3001. , PRBMDO 0163-1829 10.1103/PhysRevB.40.3001Das, B., Datta, S., Reifenberger, R., (1990) Phys. Rev. B, 41, p. 8278. , PRBMDO 0163-1829 10.1103/PhysRevB.41.827

    Monitoring Single-point Dressers Using Fuzzy Models

    Get PDF
    AbstractGrinding causes progressive dulling and glazing of the grinding wheel grains and clogging of the voids on the wheel's surface with ground metal dust particles, which gradually increases the grinding forces. The condition of the grains at the periphery of a grinding wheel strongly influences the damage induced in a ground workpiece. Therefore, truing and dressing must be carried out frequently. Dressing is the process of conditioning the grinding wheel surface to reshape the wheel when it has lost its original shape through wear, giving the tool its original condition of efficiency. Despite the very broad range of dressing tools available today, the single-point diamond dresser is still the most widely used dressing tool due to its great versatility. The aim of this work is to predict the wear level of the single-point dresser based on acoustic emission and vibration signals used as input variables for fuzzy models. Experimental tests were performed with synthetic diamond dressers on a surface-grinding machine equipped with an aluminum oxide grinding wheel. Acoustic emission and vibration sensors were attached to the tool holder and the signals were captured at 2MHz. During the tests, the wear of the diamond tip was measured every 20 passes using a microscope with 10 to 100 X magnification. A study was conducted of the frequency content of the signals, choosing the frequency bands that best correlate with the diamond's wear. Digital band-pass filters were applied to the raw signals, after which two statistics were calculated to serve as the inputs for the fuzzy models. The results indicate that the fuzzy models using the aforementioned signal statistics are highly effective for predicting the wear level of the dresser

    Self-similarity And Anti-self-similarity Of The Effective Landé G Factor In Gaas-(ga,al)as Fibonacci Superlattices Under In-plane Magnetic Fields

    Get PDF
    A theoretical study of the effects of in-plane magnetic fields on the Landé g factor associated to conduction electrons in GaAs-(Ga,Al)As Fibonacci superlattices is presented. We have used the Ogg-McCombe effective Hamiltonian, which includes nonparabolic and anisotropy effects, in order to describe the electron states in the Fibonacci heterostructure. We have expanded the corresponding electron envelope wave functions in terms of harmonic-oscillator wave functions, and obtained the Landé g factor for magnetic fields related by even powers of the golden mean τ=(1+5)2. Theoretical results for GaAs-(Ga,Al)As Fibonacci superlattices, under magnetic-field values scaled by τ2n, clearly exhibit a self-similar (for even n) or anti-self-similar (for odd n) behavior for the Landé g factors, as appropriate. © 2006 The American Physical Society.743Merlin, R., Bajema, K., Clarke, R., Juang, F.Y., Bhattacharya, P.K., (1985) Phys. Rev. Lett., 55, p. 1768. , PRLTAO 0031-9007 10.1103/PhysRevLett.55.1768Wang, Y.Y., Maan, J.C., (1989) Phys. Rev. B, 40, p. 1955. , PRBMDO 0163-1829 10.1103/PhysRevB.40.1955Toet, D., Potemski, M., Wang, Y.Y., Maan, J.C., Tapfer, L., Ploog, K., (1991) Phys. Rev. Lett., 66, p. 2128. , PRLTAO 0031-9007 10.1103/PhysRevLett.66.2128Maan, J.C., Chitta, V., Toet, D., Potemski, M., Ploog, K., (1992) Springer Series in Solid-State Sciences, 101, p. 549. , edited by G. Landwehr (Springer, BerlinBruno-Alfonso, A., Oliveira, L.E., De Dios-Leyva, M., (1995) Appl. Phys. Lett., 67, p. 536. , APPLAB 0003-6951 10.1063/1.115180Bruno-Alfonso, A., Reyes-Gómez, E., Oliveira, L.E., De Dios-Leyva, M., (1995) J. Appl. Phys., 78, p. 15. , JAPIAU. 0021-8979. 10.1063/1.360240De Dios-Leyva, M., Bruno-Alfonso, A., Reyes-Gómez, E., Oliveira, L.E., (1995) J. Phys.: Condens. Matter, 7, p. 9799. , JCOMEL. 0953-8984. 10.1088/0953-8984/7/50/014Nielsen, M.A., Chuang, I.L., (2000) Quantum Computation and Quantum Information, , Cambridge University Press, CambridgeSalis, G., Kato, Y.K., Ensslin, K., Driscol, D.C., Gossard, A.C., Awschalom, D.D., (2001) Nature (London), 414, p. 619. , NATUAS 0028-0836 10.1038/414619aZutic, I., Fabian, J., Das Sarma, S., (2004) Rev. Mod. Phys., 76, p. 323. , RMPHAT 0034-6861 10.1103/RevModPhys.76.323Engel, H.-A., Loss, D., (2005) Science, 309, p. 586. , SCIEAS 0036-8075 10.1126/science.1113203Hermann, C., Weisbuch, C., (1977) Phys. Rev. B, 15, p. 823. , PLRBAQ 0556-2805 10.1103/PhysRevB.15.823Le Jeune, P., Robart, D., Marie, X., Amand, T., Brosseau, M., Barrau, J., Kalevich, V., Rodichev, D., (1997) Semicond. Sci. Technol., 12, p. 380. , SSTEET 0268-1242 10.1088/0268-1242/12/4/006Malinowski, A., Harley, R.T., (2000) Phys. Rev. B, 62, p. 2051. , PRBMDO 0163-1829 10.1103/PhysRevB.62.2051Sapega, V.F., Ruf, T., Cardona, M., Ploog, K., Ivchenko, E.L., Mirlin, D.N., (1994) Phys. Rev. B, 50, p. 2510. , PRBMDO 0163-1829 10.1103/PhysRevB.50.2510Medeiros-Ribeiro, G., Pinheiro, M.V.B., Pimentel, V.L., Marega, E., (2002) Appl. Phys. Lett., 80, p. 4229. , APPLAB 0003-6951 10.1063/1.1483112Hanson, R., Witkamp, B., Vandersypen, L.M.K., Willems Van Beveren, L.H., Elzerman, J.M., Kouwenhoven, L.P., (2003) Phys. Rev. Lett., 91, p. 196802. , PRLTAO 0031-9007 10.1103/PhysRevLett.91.196802Rashba, E.I., Efros, A.L., (2003) Phys. Rev. Lett., 91, p. 126405. , PRLTAO 0031-9007 10.1103/PhysRevLett.91.126405De Sousa, R., Das Sarma, S., (2003) Phys. Rev. B, 68, p. 155330. , PRBMDO 0163-1829 10.1103/PhysRevB.68.155330Prado, S.J., Trallero-Giner, C., Alcalde, A.M., Lopez-Richard, V., Marques, G.E., (2004) Phys. Rev. B, 69, p. 201310. , PRBMDO 0163-1829 10.1103/PhysRevB.69.201310Destefani, C.F., Ulloa, S.E., (2005) Phys. Rev. B, 71, p. 161303. , PRBMDO 0163-1829 10.1103/PhysRevB.71.161303Ogg, N.R., (1966) Proc. Phys. Soc. London, 89, p. 431. , PPSOAU 0370-1328 10.1088/0370-1328/89/2/326McCombe, B.O., (1969) Phys. Rev., 181, p. 1206. , PHRVAO 0031-899X 10.1103/PhysRev.181.1206Braun, M., Rössler, U., (1985) J. Phys. C, 18, p. 3365. , JPSOAW. 0022-3719. 10.1088/0022-3719/18/17/013Golubev, V.G., Ivanov-Omskii, V.I., Minervin, I.G., Osutin, A.V., Polyakov, D.G., (1985) Sov. Phys. JETP, 61, p. 1214. , SPHJAR 0038-5646De Dios-Leyva, M., Reyes-Gómez, E., Perdomo-Leiva, C.A., Oliveira, L.E., (2006) Phys. Rev. B, 73, p. 085316. , PRBMDO. 0163-1829. 10.1103/PhysRevB.73.085316Li, E.H., (2000) Physica e (Amsterdam), 5, p. 215. , PELNFM 1386-9477 10.1016/S1386-9477(99)00262-3Dresselhaus, G., (1955) Phys. Rev., 100, p. 580. , PHRVAO 0031-899X 10.1103/PhysRev.100.58
    • …
    corecore