28 research outputs found

    Malaria in Sri Lanka: one year post-tsunami

    Get PDF
    One year ago, the authors of this article reported in this journal on the malaria situation in Sri Lanka prior to the tsunami that hit on 26 December 2004, and estimated the likelihood of a post-tsunami malaria outbreak to be low. Malaria incidence has decreased in 2005 as compared to 2004 in most districts, including the ones that were hit hardest by the tsunami. The malaria incidence (aggregated for the whole country) in 2005 followed the downward trend that started in 2000. However, surveillance was somewhat affected by the tsunami in some coastal areas and the actual incidence in these areas may have been higher than recorded, although there were no indications of this and it is unlikely to have affected the overall trend significantly. The focus of national and international post tsunami malaria control efforts was supply of antimalarials, distribution of impregnated mosquito nets and increased monitoring in the affected area. Internationally donated antimalarials were either redundant or did not comply with national drug policy, however, few seem to have entered circulation outside government control. Despite distribution of mosquito nets, still a large population is relatively exposed to mosquito bites due to inadequate housing. There were no indications of increased malaria vector abundance. Overall it is concluded that the tsunami has not negatively influenced the malaria situation in Sri Lanka

    Temporal correlation between malaria and rainfall in Sri Lanka

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rainfall data have potential use for malaria prediction. However, the relationship between rainfall and the number of malaria cases is indirect and complex.</p> <p>Methods</p> <p>The statistical relationships between monthly malaria case count data series and monthly mean rainfall series (extracted from interpolated station data) over the period 1972 – 2005 in districts in Sri Lanka was explored in four analyses: cross-correlation; cross-correlation with pre-whitening; inter-annual; and seasonal inter-annual regression.</p> <p>Results</p> <p>For most districts, strong positive correlations were found for malaria time series lagging zero to three months behind rainfall, and negative correlations were found for malaria time series lagging four to nine months behind rainfall. However, analysis with pre-whitening showed that most of these correlations were spurious. Only for a few districts, weak positive (at lags zero and one) or weak negative (at lags two to six) correlations were found in pre-whitened series. Inter-annual analysis showed strong negative correlations between malaria and rainfall for a group of districts in the centre-west of the country. Seasonal inter-annual analysis showed that the effect of rainfall on malaria varied according to the season and geography.</p> <p>Conclusion</p> <p>Seasonally varying effects of rainfall on malaria case counts may explain weak overall cross-correlations found in pre-whitened series, and should be taken into account in malaria predictive models making use of rainfall as a covariate.</p

    Pre-elimination stage of malaria in Sri Lanka: assessing the level of hidden parasites in the population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the dramatic drop in the transmission of malaria in Sri Lanka in recent years, the country entered the malaria pre-elimination stage in 2008. Assessing the community prevalence of hidden malaria parasites following several years of extremely low transmission is central to the process of complete elimination. The existence of a parasite reservoir in a population free from clinical manifestations, would influence the strategy for surveillance and control towards complete elimination.</p> <p>Methods</p> <p>The prevalence of hidden parasite reservoirs in two historically malaria endemic districts, Anuradhapura and Kurunegala, previously considered as high malaria transmission areas in Sri Lanka, where peaks of transmission follow the rainy seasons was assessed. Blood samples of non-febrile individuals aged five to 55 years were collected from randomly selected areas in the two districts at community level and a questionnaire was used to collect demographic information and movement of the participants. A simple, highly sensitive nested PCR was carried out to detect both <it>Plasmodium falciparum </it>and <it>Plasmodium vivax</it>, simultaneously.</p> <p>Results</p> <p>In total, 3,023 individuals from 101 villages participated from both districts comprising mostly adults between the ages 19-55 years. Out of these, only about 1.4% of them (n = 19) could recall having had malaria during the past five years. Analysis of a subset of samples (n = 1322) from the two districts using PCR showed that none of the participants had hidden parasites.</p> <p>Discussion</p> <p>A reservoir of hidden parasites is unlikely to be a major concern or a barrier to the ongoing malaria elimination efforts in Sri Lanka. However, as very low numbers of indigenous cases are still recorded, an island-wide assessment and in particular, continued alertness and follow up action are still needed. The findings of this study indicate that any future assessments should be based on an adaptive sampling approach, involving prompt sampling of all subjects within a specified radius, whenever a malaria case is identified in a given focus.</p

    Models for short term malaria prediction in Sri Lanka

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given the past history of resurgence of outbreaks despite effective control measures, the control programmes have to stay prepared. The availability of long time series of monitored/diagnosed malaria cases allows for the study of forecasting models, with an aim to developing a forecasting system which could assist in the efficient allocation of resources for malaria control.</p> <p>Methods</p> <p>Exponentially weighted moving average models, autoregressive integrated moving average (ARIMA) models with seasonal components, and seasonal multiplicative autoregressive integrated moving average (SARIMA) models were compared on monthly time series of district malaria cases for their ability to predict the number of malaria cases one to four months ahead. The addition of covariates such as the number of malaria cases in neighbouring districts or rainfall were assessed for their ability to improve prediction of selected (seasonal) ARIMA models.</p> <p>Results</p> <p>The best model for forecasting and the forecasting error varied strongly among the districts. The addition of rainfall as a covariate improved prediction of selected (seasonal) ARIMA models modestly in some districts but worsened prediction in other districts. Improvement by adding rainfall was more frequent at larger forecasting horizons.</p> <p>Conclusion</p> <p>Heterogeneity of patterns of malaria in Sri Lanka requires regionally specific prediction models. Prediction error was large at a minimum of 22% (for one of the districts) for one month ahead predictions. The modest improvement made in short term prediction by adding rainfall as a covariate to these prediction models may not be sufficient to merit investing in a forecasting system for which rainfall data are routinely processed.</p

    Mathematical Evaluation of Community Level Impact of Combining Bed Nets and Indoor Residual Spraying upon Malaria Transmission in Areas where the main Vectors are Anopheles Arabiensis Mosquitoes.

    Get PDF
    Indoor residual insecticide spraying (IRS) and long-lasting insecticide treated nets (LLINs) are commonly used together even though evidence that such combinations confer greater protection against malaria than either method alone is inconsistent. A deterministic model of mosquito life cycle processes was adapted to allow parameterization with results from experimental hut trials of various combinations of untreated nets or LLINs (Olyset, PermaNet 2.0, Icon Life nets) with IRS (pirimiphos methyl, lambda cyhalothrin, DDT), in a setting where vector populations are dominated by Anopheles arabiensis, so that community level impact upon malaria transmission at high coverage could be predicted. Intact untreated nets alone provide equivalent personal protection to all three LLINs. Relative to IRS plus untreated nets, community level protection is slightly higher when Olyset or PermaNet 2.0 nets are added onto IRS with pirimiphos methyl or lambda cyhalothrin but not DDT, and when Icon Life nets supplement any of the IRS insecticides. Adding IRS onto any net modestly enhances communal protection when pirimiphos methyl is sprayed, while spraying lambda cyhalothrin enhances protection for untreated nets but not LLINs. Addition of DDT reduces communal protection when added to LLINs. Where transmission is mediated primarily by An. arabiensis, adding IRS to high LLIN coverage provides only modest incremental benefit (e.g. when an organophosphate like pirimiphos methyl is used), but can be redundant (e.g. when a pyrethroid like lambda cyhalothin is used) or even regressive (e.g. when DDT is used for the IRS). Relative to IRS plus untreated nets, supplementing IRS with LLINs will only modestly improve community protection. Beyond the physical protection that intact nets provide, additional protection against transmission by An. arabiensis conferred by insecticides will be remarkably small, regardless of whether they are delivered as LLINs or IRS. The insecticidal action of LLINs and IRS probably already approaches their absolute limit of potential impact upon this persistent vector so personal protection of nets should be enhanced by improving the physical integrity and durability. Combining LLINs and non-pyrethroid IRS in residual transmission systems may nevertheless be justified as a means to manage insecticide resistance and prevent potential rebound of not only An. arabiensis, but also more potent, vulnerable and historically important species such as Anopheles gambiae and Anopheles funestus

    Modelling the implications of stopping vector control for malaria control and elimination

    Get PDF
    Increasing coverage of malaria vector control interventions globally has led to significant reductions in disease burden. However due to its high recurrent cost, there is a need to determine if and when vector control can be safely scaled back after transmission has been reduced.; A mathematical model of Plasmodium falciparum malaria epidemiology was simulated to determine the impact of scaling back vector control on transmission and disease. A regression analysis of simulation results was conducted to derive predicted probabilities of resurgence, severity of resurgence and time to resurgence under various settings. Results indicate that, in the absence of secular changes in transmission, there are few scenarios where vector control can be removed without high expectation of resurgence. These, potentially safe, scenarios are characterized by low historic entomological inoculation rates, successful vector control programmes that achieve elimination or near elimination, and effective surveillance systems with high coverage and effective treatment of malaria cases.; Programmes and funding agencies considering scaling back or withdrawing vector control from previously malaria endemic areas need to first carefully consider current receptivity and other available interventions in a risk assessment. Surveillance for resurgence needs to be continuously conducted over a long period of time in order to ensure a rapid response should vector control be withdrawn

    Development of a new version of the Liverpool Malaria Model. II. Calibration and validation for West Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the first part of this study, an extensive literature survey led to the construction of a new version of the <it>Liverpool Malaria Model </it>(LMM). A new set of parameter settings was provided and a new development of the mathematical formulation of important processes related to the vector population was performed within the LMM. In this part of the study, so far undetermined model parameters are calibrated through the use of data from field studies. The latter are also used to validate the new LMM version, which is furthermore compared against the original LMM version.</p> <p>Methods</p> <p>For the calibration and validation of the LMM, numerous entomological and parasitological field observations were gathered for West Africa. Continuous and quality-controlled temperature and precipitation time series were constructed using intermittent raw data from 34 weather stations across West Africa. The meteorological time series served as the LMM data input. The skill of LMM simulations was tested for 830 different sets of parameter settings of the undetermined LMM parameters. The model version with the highest skill score in terms of entomological malaria variables was taken as the final setting of the new LMM version.</p> <p>Results</p> <p>Validation of the new LMM version in West Africa revealed that the simulations compare well with entomological field observations. The new version reproduces realistic transmission rates and simulated malaria seasons are comparable to field observations. Overall the new model version performs much better than the original model. The new model version enables the detection of the epidemic malaria potential at fringes of endemic areas and, more importantly, it is now applicable to the vast area of malaria endemicity in the humid African tropics.</p> <p>Conclusions</p> <p>A review of entomological and parasitological data from West Africa enabled the construction of a new LMM version. This model version represents a significant step forward in the modelling of a weather-driven malaria transmission cycle. The LMM is now more suitable for the use in malaria early warning systems as well as for malaria projections based on climate change scenarios, both in epidemic and endemic malaria areas.</p

    Made-to-Measure Malaria Vector Control Strategies: Rational Design Based on Insecticide Properties and Coverage of Blood Resources for Mosquitoes.

    Get PDF
    Eliminating malaria from highly endemic settings will require unprecedented levels of vector control. To suppress mosquito populations, vector control products targeting their blood hosts must attain high biological coverage of all available sources, rather than merely high demographic coverage of a targeted resource subset, such as humans while asleep indoors. Beyond defining biological coverage in a measurable way, the proportion of blood meals obtained from humans and the proportion of bites upon unprotected humans occurring indoors also suggest optimal target product profiles for delivering insecticides to humans or livestock. For vectors that feed only occasionally upon humans, preferred animal hosts may be optimal targets for mosquito-toxic insecticides, and vapour-phase insecticides optimized to maximize repellency, rather than toxicity, may be ideal for directly protecting people against indoor and outdoor exposure. However, for vectors that primarily feed upon people, repellent vapour-phase insecticides may be inferior to toxic ones and may undermine the impact of contact insecticides applied to human sleeping spaces, houses or clothing if combined in the same time and place. These concepts are also applicable to other mosquito-borne anthroponoses so that diverse target species could be simultaneously controlled with integrated vector management programmes. Measurements of these two crucial mosquito behavioural parameters should now be integrated into programmatically funded, longitudinal, national-scale entomological monitoring systems to inform selection of available technologies and investment in developing new ones
    corecore