2,747 research outputs found

    UNO Spring 2016 UG Re-Enrollment Update

    Get PDF
    From the Pace report at Analytics.unomaha.edu: Just over 70% of all eligible undergraduate students have re-enrolled for Spring 2016. Of the 15,644 eligible, 4,652 are missing

    Quantitative Assessment of the Risk of Release of Foot-and-Mouth Disease Virus via Export of Bull Semen from Israel

    Get PDF
    Various foot-and-mouth disease (FMD) virus strains circulate in the Middle East, causing frequent episodes of FMD outbreaks among Israeli livestock. Since the virus is highly resistant in semen, artificial insemination with contaminated bull semen may lead to the infection of the receiver cow. As a non-FMD-free country with vaccination, Israel is currently engaged in trading bull semen only with countries of the same status. The purpose of this study was to assess the risk of release of FMD virus through export of bull semen in order to estimate the risk for FMD-free countries considering purchasing Israeli bull semen. A stochastic risk assessment model was used to estimate this risk, defined as the annual likelihood of exporting at least one ejaculate of bull semen contaminated with viable FMD virus. A total of 45 scenarios were assessed to account for uncertainty and variability around specific parameter estimates and to evaluate the effect of various mitigation measures, such as performing a preexport test on semen ejaculates. Under the most plausible scenario, the annual likelihood of exporting bull semen contaminated with FMD virus had a median of 1.3 * 10(-7) for an export of 100 ejaculates per year. This corresponds to one infected ejaculate exported every 7 million years. Under the worst-case scenario, the median of the risk rose to 7.9 * 10(-5), which is equivalent to the export of one infected ejaculate every 12,000 years. Sensitivity analysis indicated that the most influential parameter is the probability of viral excretion in infected bulls

    Inferring Traffic Flow Characteristics from Aggregated-flow Measurement

    Get PDF
    In the Internet, a statistical perspective of global traffic flows has been considered as an important key to network operations and management. Nonetheless, it is expensive or sometime difficult to measure statistics of each flow directly. Therefore, it is of practical importance to infer unobservable statistical characteristics of individual flows from characteristics of the aggregated-flows, which are easily observed at some links (e.g., router interfaces) in the network. In this paper, we propose a new approach to such inference problems based on finding an inverse function from (observable) probabilities of some states on aggregated-flows to (unobservable) probabilities of some states on flows on a discrete state model, and provide a method inferring arrival rate statistics of individual flows (the OD traffic matrix inference). Our method is applicable to cases not covered by the existing normal-based methods for the OD traffic matrix inference. We also show simulation results on several flow topologies, which indicate potential of our approach

    Efficient quality of service‐aware packet chunking scheme for machine‐to‐machine cloud services

    Get PDF
    With the recent advances in machine-to-machine(M2M) communications, huge numbers of devices have become connected and massive amounts of traffic are exchanged. M2M applications typically generate small packets, which can profoundly affect the network performance. Namely, even if the packet arrival rate at the router is lower than the link bandwidth, bits per second(BPS), it can exceed the router forwarding capacity, which indicates the maximum number of forwarded packets per second(PPS). This will cause the decrease in the network throughput. Therefore, eliminating the PPS limitation by chunking small packets will enable M2M cloud services to spread further. This paper proposes new packet-chunking schemes aimed at meeting both application requirements and improving achievable router throughput. In our schemes, multiple buffers, each of which accommodates packets classified based on their delay requirement, are installed in parallel. Herein, we report on analysis of the theoretically performance of these schemes, which enabled us to derive some important features. We also propose a scheme whereby a single chunking buffer and parallel multiple buffers were arranged in tandem. Through our simulation and numerical results, we determined that these schemes provide excellent performance in reducing the number of outgoing packets from the router while meeting various delay requirements.The 2nd IEEE International Workshop on High-Performance Interconnection Networks in the Exascale and Big-Data Era (IEEE HPCA 2016),March 12, 2016, Barcelona, Spai
    corecore