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Inferring Traffic Flow Characteristics from Aggregated-flow Measurement

Masato Tsuru,†1,†2 Tetsuya Takine†3 and Yuji Oie†1,†4

In the Internet, a statistical perspective of global traffic flows has been considered as an im-
portant key to network operations and management. Nonetheless, it is expensive or sometime
difficult to measure statistics of each flow directly. Therefore, it is of practical importance
to infer unobservable statistical characteristics of individual flows from characteristics of the
aggregated-flows, which are easily observed at some links (e.g., router interfaces) in the net-
work. In this paper, we propose a new approach to such inference problems based on finding
an inverse function from (observable) probabilities of some states on aggregated-flows to (un-
observable) probabilities of some states on flows on a discrete state model, and provide a
method inferring arrival rate statistics of individual flows (the OD traffic matrix inference).
Our method is applicable to cases not covered by the existing normal-based methods for the
OD traffic matrix inference. We also show simulation results on several flow topologies, which
indicate potential of our approach.

1. Introduction

The Internet is currently shifting towards
a social and economical infrastructure, which
needs to be operated in a reliable and efficient
way, and thus whose characteristics should be
measurable. For example, a statistical perspec-
tive of global traffic flows has been considered
as an important key to network operations and
management, e.g., configuration, provisioning,
traffic engineering, and detection of anomalous
or malicious activities. Nonetheless, it is expen-
sive or sometime difficult to measure statistics
of each flow directly, i.e., based on identifying
the flow to which each packet belongs by refer-
encing the source and destination IP addresses
in the packet and a global routing information
at that time (although several researches tried
it by capturing and analyzing raw traffic data
in a network 1)). Moreover, we need to treat
cases in which source IP addresses are not reli-
able (e.g., watching malicious packets). There-
fore, it is of practical importance to infer un-
observable statistical characteristics of individ-
ual flows from characteristics of the aggregated-
flows, which are easily observed at some links
(e.g., router interfaces) in the network.
In this paper ☆, we propose a new approach

to infer statistical characteristics of each flow
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from only observation of the aggregated-flows.
We regard a “flow” as a series of (some kind of)
packets from an origin node to a destination
node under a fixed routing scheme. Here we
intend that a “node” does not correspond to
a single host but to a large set of hosts (i.e., a
network or a set of networks), and thus a “flow”
is not related to source-destination IP addresses
directly but to a partial topological structure of
routing paths in a network, e.g., routes from an
Internet Service Provider (ISP) to another ISP.
Let us consider flows f1, f2, . . . fp, and

directed-links l1, l2, . . . lq. Each link li is associ-
ated with a set Fi of flows where all (and only)
flows in the set Fi pass through link li. The goal
is to infer characteristics of each flow fj (1 ≤
j ≤ p) from only observation of aggregated-flow
Fi at link li (1 ≤ i ≤ q). We assume that we can
observe all aggregated-flows F1, . . . Fq simulta-
neously so that we know correlations among
them. Thus, if there exists an injection from
each flow to a set of aggregated-flows includ-
ing the flow (assuming p ≤ 2q − 1), and if each
flow behaves independently, we have a chance
to infer some statistics on each flow from such
correlations among a set of aggregated-flows.
The arrival rate, i.e., the number of arriving

traffic bytes or packets in a unit time-interval,
is a typical example of such flow character-
istics. The inference of arrival rates of indi-
vidual flows is known as the origin-destination
(OD) traffic matrix problem. Originally, the
OD traffic matrix problem is to infer unob-

☆ A preliminary work of this paper was presented in
IEEE/IPSJ SAINT2002 2).
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servable OD flow traffic intensity (byte counts)
from the link traffic intensity (byte counts)
measured at some routers’ interfaces, and sev-
eral researches have studied this problem 3)∼6).
They assumed that all OD byte counts were
modeled by independent normal distributions
with a special relation between means and vari-
ances (or Poisson distributions), and were iid
over successive measurement time-intervals or
something like that. Then they employed the
Expectation-Maximization (EM) algorithm to
approximately calculate the maximum likeli-
hood estimators (MLE) for the parameters of
the models. However, since those methods were
based on normal models, they were not appli-
cable to irregular or small volume flows.
Our approach is different from the above ap-

proach. It is based on a principle proposed as
a general framework of “inverse function ap-
proach” i.e., by finding a map from some (ob-
servable) resultant probabilities to some (un-
observable) causal probabilities on a discrete
model 7), which is regarded as a generaliza-
tion of a method inferring internal queuing de-
lay statistics using end-to-end measurements of
multicast probe packets 8). In accordance with
the principle, we model the number of arriv-
ing packets in a measurement time-interval on
each flow as an independent discrete random
variable, and determine the distribution (i.e.,
histogram) consistent with observed data. Our
method is applicable to flow rates with general
(irregular) distributions that cannot be cap-
tured by normal-based models. On the other
hand, our method requires that the number of
arrivals in a measurement time-interval should
sometimes take 0. In this paper, therefore, in-
stead of inferring the rate of the whole traffic,
we focus especially on inferring the arrival rate
of some kind of special packets, where by “spe-
cial” we mean that such packets do not always
arise in each measurement interval. Of course,
this condition is relative to the scale of measure-
ment interval time, and thus a very short inter-
val time may allow us to infer the rate statistics
of the whole traffic. However, our intention is
to infer statistics of some irregular events with
a distribution that is not covered by the exist-
ing normal-based methods. For example, we
intend to infer the rate statistics of some kind
of ICMP packets, packets with some kind of
IP options, or IPv6 packets. Other end-to-end
events related to TCP or application layers can
be dealt with by our method if routers count

such events. It is expected that the dynamics
of such special events on each flow indicate use-
ful information on anomalous congestion, mali-
cious activities, or deployment of some optional
functions, for example.
The remainder of this paper is organized as

follows. Section 2 describes a general model
consisting of flows, links, aggregated-flows, and
characteristics of flows to be inferred. Section 3
explains how to apply the inference principle
to inferring arrival rates of packets with some
examples. Section 4 shows simulation results.
Finally Section 5 concludes this work.

2. General Model

We define a model for the inference problem
based on a general framework 7).

2.1 Links and Flows
Let us consider a directed-graph consisting

of nodes (vertexes) and directed-links (edges),
and flows on the graph. Each flow is a series
of some kind of packets from an origin node
to a destination node along a fixed sequence of
directed-links without a loop. We call a set of
flows passing through a link by an “aggregated-
flow” passing through that link.
LinkLinkLink is defined as a set consisting of all ob-

servable links at which the characteristic of the
aggregated-flow passing through the link can
be obtained from observations. Typically, LinkLinkLink
corresponds to a set of (incoming and/or out-
going) interfaces of one or more routers in a
network. FlowF lowF low is defined as a set consisting of
all flows passing through at least one of links in
LinkLinkLink.
For each flow e ∈ FlowF lowF low, we define passing-

link set RRR(e) as a set of links in LinkLinkLink that
are passed through by the flow e. Note that
RRR(e) �= ∅. We denote a set consisting of all
passing-link sets by ∆: ∆ def= {RRR(e)|e ∈ FlowF lowF low}.
Then, for R ∈ ∆, we define “distinguishable
flow” fR as a set {e|RRR(e) = R} of flows. In
other words, we label each (distinguishable)
flow by its passing-link set R. We also denote
a set consisting all “distinguishable flow”s by
∆∗. In what follows, we use a term “flow” as a
“distinguishable flow”.
For each link l ∈ LinkLinkLink, we define FFF l as a set

of flows (an aggregated-flow) passing through
link l: FFF l

def= {fR|l ∈ R, R ∈ ∆}. Without
loss of generality, we assume that FFF l1 �= FFF l2 if
l1 �= l2.

Figure 1 shows four examples. Both (I) and
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Fig. 1 Examples of the network model (nodes, links
and flows).

Table 1 Links and flows in the examples.

(I) (II) (III) (IV)
LinkLinkLink a, b a,b,c,d a,b,c,a’,b’,c’ a, b, c
FlowF lowF low a, b, ac, ad, ab’, ac’, a’b, a, b, c, ab,
(∆) ab bc, bd bc’, a’c, b’c bc, abc

(III) have three end nodes 0, 1, and 2, and both
(II) and (IV) have four end nodes 0, 1, 2 and
3, where, by “end node”, we mean an origin
and/or destination node of a flow. Links and
flows on them are shown in Table 1. In (I),
LinkLinkLink = {a, b}, and ∆ = {a, b, ab}, where fa is a
flow from node 0 to 1, fb is from 1 to 2, and fab

is from 0 to 2, respectively. Aggregated-flows
are FFF a = {fa, fab} and FFF b = {fb, fab}.

2.2 Characteristics of Flows to be In-
ferred

We define some notations to describe charac-
teristics of a flow or a set of flows as follows.
• MMM = {0, 1, . . .M}: A set of integers rep-
resenting states related to characteristic of a
flow or a set of flows.
• XR(m): An unobservable event that the
state of a flow fR is m ∈ MMM for R ∈ ∆.
• V (F )(m): An event that the state of a set
F of flows is m ∈ MMM . If F = {fR} then
V ({fR})(m) = XR(m).
• Yl(m) def= V (FFF l)(m): An observable event
that the state of an aggregated-flow FFF l ism ∈
MMM for l ∈ LinkLinkLink.
We also define the occurrence probabilities re-

lated to the above events:

xR(m)def= Pr[XR(m)],

y(R)(m)def= Pr[
m⋃

k=0

⋃
l∈R

Yl(k)],

y(R,R′)(m)def= Pr[
⋂

l∈R\R′
Yl(0) ∩

⋂
l∈R′

Yl(m)],

where y(R)(m) means, for a set R of links,

the probability that the state of at least one
aggregated-flow in the set {FFF l|l ∈ R} is within
{0, 1, . . .m}; and y(R,R′)(m) means, for two
sets R and R′ satisfying R′ ⊂ R, the probability
that the states of all aggregated-flows in the set
{FFF l|l ∈ R−R′} are the same 0, and the states
of all aggregated-flows in the set {FFF l|l ∈ R′}
are the same m. We assume the following con-
ditions on {V (F )(m)|F ⊂ ∆∗, F �= ∅,m ∈ MMM}:
(i) States on a flow (or a set of flows) occur
exclusively, i.e., V (F )(i) ∩ V (F )(j) �= ∅ if
i �= j.

(ii) States on different flows (or exclusive sets of
flows) occur independently, i.e., V (F )(i) and
V (F ′)(j) are independent if F, F ′ �= ∅, F ∩
F ′ = ∅, i, j ∈ M .

(iii)State 0 sometimes occurs, i.e., 0 <
Pr[V (F )(0)].

(iv)A certain technical condition holds on
the relation between V (F + F ′)(m) and
V (F )(s1) ∩ V (F ′)(s2) for ∀s1, s2 ≤ m. Note
that if V (F )(m) satisfies (m ∈ MMM)

V (F + F ′)(m)

=
m∑

j=0

V (F )(j) ∩ V (F ′)(m− j) (1)

then it also satisfies this condition (iv).
Then, it can be shown that y(R)(m) and
y(R,R′)(m) can be calculated from {xR(m)},
i.e., there exists map GGG:(

y(R)(m), y(R′, R′′)(m)
)
R,R′,R′′,m

= GGG(xR(m);m ∈ MMM,R ∈ ∆)
Roughly speaking, the key of our inference

principle is that we can find inverse map GGG−1
R,m

such that

xR(m)=GGG−1
R,m(y(.)(i), y(., .)(i); 0 ≤ i ≤ m)

by taking appropriate y(.) and y(., .) accord-
ing to R ∈ ∆. In other words, if we can ob-
tain the occurrence probabilities of some kinds
of concurrent states on appropriate sets of
aggregated-flows:

{y(R)(m), y(R′, R′′)(m)|m ∈ MMM,R ∈ Ψ,

R′ ∈ Ψ′, R′′ is a subset of R′},
where Ψ and Ψ′ are appropriate subsets of
2LinkLinkLink, then we can also obtain (determine) the
occurrence probabilities of individual states on
individual flows:

{xR(m)|0 ≤ m ≤ M, R ∈ ∆}.
Note that this is the generic form, and in the

next section, we introduce a more specific form
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for some example topologies.

3. Inference Method for Arrival Rates

3.1 Inference of Arrival Rates
We explain how to infer the distribution of

each flow rate from observation of aggregated-
flow rates. First, we should define the unit time
for the “(arrival) rate”. Let T (sec) be a unit
time (i.e., the length of each measurement in-
terval) for the rates so that a “flow rate” is de-
fined as “the number of arriving packets on a
flow in a T interval”. To obtain the distribu-
tion (or statistics) of a rate, for a sufficient large
n, we repeatedly measure the rate in n succes-
sive measurement intervals: {[(i− 1)T, iT ); i =
1, 2, . . . n}. For each i ∈ {1, 2, . . . n}, let wl

i
and vR

i be the number of packets arriving to
aggregated-flow FFF l and flow fR in the i-th mea-
surement interval, respectively. The number of
arrivals ranges from 0 to M . We assume that
{vR

i |1 ≤ i ≤ n} is regarded as iid for each R,
and thus we can let vR be a random variable
behind the measurements that represents the
number of packets arriving to flow fR in a mea-
surement interval. We ignore the problem of
packet transmission delay and clock synchro-
nization between different measurement points
(e.g., router interfaces) so that we assume that
wl

i can be exactly observed at link l. Our goal
is to infer the distribution of vR:

xR(m) def= Pr[vR = m], m ∈ MMM,

for each flow fR, by which we can obtain the
mean rate:

E[vR] def=
M∑

m=0

mxR(m)

or the normalized mean rate E[vR]/T .
We have the system (linear equations) among

observable wl
i and unobservable vR

i for each i ∈
{1, 2, . . . n}.

wl
i =

∑
fR∈FFF l

vR
i for l ∈ LinkLinkLink (2)

If the above Eq. (2) is uniquely solvable, then
we have map HHHR such that vR

i = HHHR(wl
i; l ∈

LinkLinkLink), and thus, for a sufficient large n, we can
directly estimate xR(m) as:

x̂R(m) def=
1
n

n∑
i=1

111(vR
i = m)

=
1
n

n∑
i=1

111(HHHR(wl
i; l ∈ LinkLinkLink) = m)

where 111(.) denotes the indication function.
Hereafter, we consider cases in which Eq. (2)

is not uniquely solvable. In such cases, although
each vR

i cannot be uniquely determined, we
show that the distribution of vR can be deter-
mined in a statistical way.
In accordance with the model in Section 2,

since XR should correspond to unobservable
events on flow fR and Yl should correspond
to observable events on aggregated-flow FFF l, let
V (F )(m) be event “

∑
fR∈F vR = m”, XR(m)

be event “vR = m”, and Yl(m) be event
“
∑

fR∈FFF l
vR = m”, respectively, for F ⊂ ∆∗,

R ∈ ∆, l ∈ LinkLinkLink, and m ∈ MMM .
Let us check the conditions on V in Section 2.

Condition (i) is clear. Moreover we can show
Eq. (1), so that condition (iv) is satisfied. Let
F and F ′ be two exclusive sets of flows. In
each measurement interval, it is clear that “the
number of arriving packets on all flows in F +
F ′” = “the number of arriving packets on all
flows in F” + “the number of arriving packets
on all flows in F ′”. Hence, when V (F +F ′)(m)
occur, one of the following events must occur
exclusively: V (F )(0)∩V (F ′)(m), ..., V (F )(m−
1) ∩ V (F ′)(1), or V (F )(m) ∩ V (F ′)(0), which
implies Eq. (1).
On the other hand, whether condition (ii)

and (iii) are satisfied or not depends on both
the nature of the target traffic and unit time
T . Those conditions, therefore, are regarded
as requirements (restrictions) for our approach.
Note that (ii) is expected to be satisfied approx-
imately because of diversity of traffic in actual
networks.

3.2 Examples
While several estimators can be derived from

the framework in the previous section, we
can employ the most basic estimator on the
binary-tree relation (the shared-part and two
independent-parts) for the examples in this
section. For concise descriptions, we prepare
the following definitions of xR(m), yl(m) and
yll′(m) for R ∈ ∆, m ∈ MMM , and l, l′ ∈ LinkLinkLink.

xR(m) def= Pr[vR ≤ m] =
m∑

k=0

xR(k),

yl(m) def= y(l)(m) = Pr[
m⋃

k=0

Yl(k)],

yll′(m) def= y(l)(m) + y(l′)(m)− y(ll′)(m)
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Fig. 2 Examples of flows on actual networks.

= Pr[
m⋃

k=0

Yl(k) ∩
m⋃

k=0

Yl′(k)] (3)

For a sufficient large n, we can directly esti-
mate yl(m) and yll′(m) as ŷl(m) and ŷll′(m),
respectively, by the sample means:

ŷl(m) def=
1
n

n∑
i=1

111(wl
i ≤ m),

ŷll′(m) def=
1
n

n∑
i=1

111(wl
i ≤ m ∧ wl′

i ≤ m)

(4)
In what follows, we show that we can find

map GGG−1
R,m (for each R ∈ ∆ and each m ∈ MMM)

in examples in Fig. 2, by which we infer xR(m)
as GGG−1

R,m(ŷl(i), ŷll′(i); l, l′ ∈ LinkLinkLink, 0 ≤ i ≤ m).
For (I) in Fig. 2 (modeled by (I) in Fig. 1),

we observe aggregated-flows at two routers (in-
terfaces) a and b, and can obtain (directly esti-
mate), ŷa(m), ŷb(m), and ŷab(m), for m ∈ MMM ,
from observed data {(wa

i , w
b
i )|i = 1, 2, . . . n}.

The relation between unobservable flow rates
(va

i , v
b
i , v

ab
i ) and aggregated-flow rates (wa

i , w
b
i )

is shown by the following equation. Figure 3
(I) also shows the relation.(

wa
i

wb
i

)
=

(
1 0 1
0 1 1

) 
 va

i

vb
i

vab
i


 .

Since we assume that va, vb, vab are indepen-
dent each other (condition (ii) in the previous
section), we have the following system GGG from
Eq. (3).

ya(m) =
m∑

i=0

xab(i)xa(m− i),

yb(m) =
m∑

i=0

xab(i)xb(m− i),

f

f

f

f

ac

ad bc

bd

Fa

Fd

Fc

Fb

f

f

f

f f

fbc

abc

ab

a b c

Fa
Fb Fc

(II)

(IV)

f

f f

ab’

ac’ b’c

Fa Fb’
(III)

f

f

fbc’ a’c

a’bFb Fa’

Fa Fb

fa fbfab
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Fig. 3 Relation between flows and aggregated-flows.

yab(m) =
m∑

i=0

xab(i)xa(m− i)xb(m− i).

Then, since we assume that 0 < xa(0), xb(0),
xab(0) (condition (iii) in the previous section),
we can solve it inductively with respect to m as
follows (r ∈ {a, b}):

xab(0) =
ya(0)yb(0)
yab(0)

,

xa(0) =
yab(0)
yb(0)

, xb(0) =
yab(0)
ya(0)

,

xab(m) = GGG−1
ab,m(ymymym)

def=
xab(0)
2

(
Eab −√

E2
ab −

4CaCb

ya(0)yb(0)
+

4Dab

yab(0)

)
,

xr(m) =
Cr − xab(m)xr(0)

xab(0)
,

xr(m) = GGG−1
r,m(ymymym)

def= xr(m)− xr(m− 1), (5)

where

ymymym
def= {ya(i), yb(i), yab(i)|0 ≤ i ≤ m}

Cr
def= yr(m)−

m−1∑
i=1

xab(i)xr(m− i),

Dab
def= yab(m)−

m−1∑
i=1

xab(i)xa(m− i)xb(m− i),

Eab
def=

Ca

ya(0)
+

Cb

yb(0)
− 1.

An intuition for the above identifiability is as
follows. In a measurement interval, if we see
no traffic at router a and some traffic at router
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b, then we can know that the traffic belongs
to flow b. This simple insight can be extended
to a number of independent observations, and
uniquely determines the statistics of flows a, b
and ab consistent with the observed data. Note
that, the smaller unit time T is used, the more
chances to see no traffic at router a are ex-
pected, and thus, the more accurate inference
can be done.
Note that another estimator for xa and

xb can be derived from simple relations:
xa(m) = y(ab, a)(m)/yb(0) and xb(m) =
y(ab, b)(m)/ya(0), where y(R,R′)(m) is defined
in the previous section.
Hereafter we employ x. and ŷ. to denote

{x.(m)|m ∈ MMM} and {ŷ.(m)|m ∈ MMM}, respec-
tively. For (II) in Fig. 2 (modeled by (II) in
Fig. 1), we observe aggregated-flows at four in-
terfaces a, b, c and d of a router, and can ob-
tain, ŷa, ŷb, ŷc, ŷd, ŷac, ŷad, ŷbc, and ŷbd by
Eq. (4). Although the number of links is equal
to the number of flows, Eq. (2) in this case is
not uniquely solvable because of the implicit re-
striction wa

i + wb
i = wc

i + wd
i .


wa

i

wb
i

wc
i

wd
i


 =




1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1







vac
i

vad
i

vbc
i

vbd
i




In the same manner as the previous example,
we can infer xac (from ŷa, ŷc and ŷac), xad (from
ŷa, ŷd and ŷad), xbc (from ŷb, ŷc and ŷbc), and
xbd (from ŷb, ŷd and ŷbd).
We show more realistic examples (III) and

(IV). Figure 3 indicates that (III) is regarded
as a straight-forward extension of (II). We ob-
serve aggregated-flows at three incoming inter-
faces (a, b, c) and three outgoing interfaces (a′,
b′, c′), and then we infer xab′ , xac′ , xa′b, xbc′ ,
xa′c, and xb′c.
For (IV) in Fig. 2, we observe aggregated-

flows at only three routers a, b and c, and then
we infer xabc, xaxab and xcxbc (from ŷa, ŷc and
ŷac), xabxabc, xa, and xbxbc (from ŷa, ŷb, and
ŷab), xbcxabc, xc, and xbxab (from ŷb, ŷc and
ŷbc). Finally, we can infer each of xabc, xab,
xbc, xa, xb, and xc.
Before ending this section, we note that, com-

putational cost of inferring all flow rate dis-
tributions is approximately O(|∆| × M2 × n),
i.e., linear w.r.t. the number of flows, quadratic
w.r.t. the number of discrete values, and lin-
ear w.r.t. the number of measurement intervals,
which implies that M should be small in prac-

tical use. Therefore, in order to infer statistics
of rates varying in a wide range, or rates as
the number of arriving bytes (instead of arriv-
ing packets), we need to round (quantize) the
number by an adequate bin size that depends
on acceptable computational cost and required
inference accuracy.

4. Simulation

We examine four examples shown in Fig. 2
through simulations. We dispatch a series of
pings, i.e., ICMP echo request 64-byte packets,
as a target (to be inferred) flow. We employ
three types of distributions of inter-arrival time
between adjacent pings: (U) uniform distribu-
tion in a range [0.2×m, 1.8×m] with mean m,
(P) Pareto distribution with meanm and shape
ρ, (E) exponential distribution with mean m.
The bandwidth of each link is 1.5 Mb/s with
10ms of propagation delay. We count the num-
ber of ICMP echo request packets arriving to
each aggregated-flow in each measurement in-
terval [(i− 1)T, iT ) for i = 1, 2, . . . n, where we
choose 1 or 0.5 sec as unit interval time T . We
infer, on each flow, the distribution of arrival
rate of ping and then calculate the (normal-
ized) mean arrival rate (the mean number of
pings arriving in 1 sec).
For (I) of Fig. 2, we generate three indepen-

dent streams of type-U ping with mean inter-
arrival time m = 1.5 sec on flow fa, a stream of
type-E ping with m = 0.4 on fab, and a stream
of type-P ping with m = 0.3 and ρ = 1.5 on fb.
Note that the theoretical mean rates (pps) are
2 for fa, 2.5 for fab, and 3.3 for fb, respectively.
To infer xr(m) for r ∈ {a, b, ab}, we need the

division by ŷr(0) in GGG−1 of Eq.(5). If one of
ŷa(0), ŷb(0), and ŷab(0) is close to 0, the con-
vergence of inferred value x̂r(m) may be unsta-
ble because of a large relative error in 1/ŷr(0).
Therefore, unit time T should be so small that
the number of arrivals on each aggregated-flow
in a measurement interval sometimes takes 0,
i.e., ŷr(0) � 0. The top of Fig. 4 shows the
convergence of ŷr(0) for T = 1 and 0.5 (sec).
For T = 1, since ŷab(0) remains 0 until about
1,200 seconds elapse, xr(m) cannot be inferred
by using GGG−1 there.
To see the relation between normalized mean

arrival rate and the probability of no packet ar-
riving in a T interval, let us consider the most
simple case (i.e., all flows are the Poisson, so
that all aggregated-flows are also the Poisson).
If packets on an aggregated-flow has exponen-
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Fig. 4 Probability of no packet arriving in a T
interval with T = 1 and T = 0.5 (sec).

Table 2 Flow parameters in a simulation for (II).

flow pps type m flow pps type m
ac 2 U ×3 1.5 ad 1.4 P 0.7
bc 0.8 E 1.3 bd 3.3 E 0.3

tially distributed inter-arrival time with mean
m, then normalized mean aggregated-flow rate
is equal to 1/m, and the probability of no
packet arriving on the aggregated-flow in a T
interval is equal to exp(−T/m). When the unit
time decreases from T to T ′, the probability of
no packet arriving in a unit time increases expo-
nentially with respect to (T −T ′)/m. The bot-
tom of Fig. 4 shows the relation between 1/m
and exp(−T/m) for T = 1 or 0.5.
For (II), we generate three independent type-

U streams on fac, a type-P stream (ρ = 1.5)
on fad, a type-E stream on fbc, and a type-E
stream on fbd, respectively, as shown in Ta-
ble 2. For (III), we generate two indepen-
dent type-U streams on fab′ , a type-P stream
(ρ = 1.5) on fa′b, a type-E stream on fbc′ ,
two independent type-U streams on flow fb′c, a
type-P stream (ρ = 1.3) on fa′c, and a type-E
stream on fac′ , respectively, as shown in Ta-
ble 3. For (IV), we generate three indepen-
dent type-U streams on flow fa, two indepen-

Table 3 Flow parameters in a simulation for (III).

flow pps type m flow pps type m
ab′ 0.6 U ×2 3.34 a′b 1.0 P 1.0
bc′ 1.4 E 0.71 b′c 1.2 U ×2 1.67
a′c 2.0 P 0.5 ac′ 2.8 E 0.36

Table 4 Flow parameters in a simulation for (IV).

flow pps type m flow pps type m
a 1.2 U ×3 2.5 ab 0.7 P 1.5
b 0.8 U ×2 2.5 bc 0.8 E 1.3
c 1.3 P 0.8 abc 0.7 E 1.5
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Fig. 5 The mean rates inference in (I) with T = 1
and T = 0.5.

dent type-U streams on flow fb, a type-P stream
(ρ = 1.5) on fc, a type-P stream (ρ = 1.3)
on fab, a type-E stream on fbc, and a type-E
stream on fabc, respectively, as shown in Ta-
ble 4.

Figure 5, Fig. 6, Fig. 7, Fig. 8, and Fig. 9
show comparison between the real mean rates
(denoted by “real-xx”) and the inferred mean
rates (denoted by “inferred-xx”) on individual
flows in duration [0, t) where t is the elapsed
time (sec) from the beginning of the measure-
ment. Those figures correspond to case (I) with
interval time T = 1 (sec) and 0.5, case (II) with
T = 1 and 0.5, case (III) with T = 1 sec, case
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Fig. 6 The mean rates inference in (II) with T = 1
and 0.5.
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Fig. 7 The mean rates inference in (III) with T = 1.
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Fig. 8 The mean rates inference in (IV) with T = 1.
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Fig. 9 The mean rates inference in (IV) with T = 0.5.
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(IV) with T = 1, and case (IV) with T = 0.5,
respectively.
The top of Fig. 5 shows a “bad” case in

which the probabilities of no packet arriving on
aggregated-flows in a measurement interval are
very small (i.e., ya(0), yb(0), and yab(0) ≈ 0)
for T = 1, where we see very slow convergence.
On the other hand, the bottom of Fig. 5 indi-
cates a half measurement interval (T = 0.5) can
dramatically increase those probabilities (ya(0),
yb(0), and yab(0) � 0), and thus improve the
convergence rates. This behavior is explained
by Fig. 4 mentioned before.
In Fig. 6–Fig. 9, we can see acceptable con-

vergences within 1,500 seconds under moder-
ate conditions. Moreover, we do not see par-
ticular differences in inference accuracy among
three types of distributions of the inter-arrival
time. In cases (II) and (III), inference seems
quite stable and accurate. On the other hand,
in case (IV) with T = 1, although the in-
ferred values roughly track the real values, we
see a slow convergence with instability (Fig. 8),
where we try to infer mean rates on six in-
dividual flows from observation of only three
aggregated-flows. Case (IV) with T = 0.5 veri-
fies that the shorter measurement interval time
makes better stability and accuracy (Fig. 9).

5. Concluding Remarks

In this paper, we have presented a new
approach to inferring unobservable statisti-
cal characteristics (occurrence probabilities of
some discrete states) of individual flows from
observable characteristics of some aggregated-
flows. By this approach, the distribution of the
number of packets (in a unit interval) arriving
to each flow can be inferred by observing the
number of packets arriving to the aggregated-
flows at some links (e.g., interfaces of routers)
over a number of unit intervals. Although our
method requires some condition on dynamics
of arrivals, it is applicable to general (irregular)
distributions that cannot be captured by exist-
ing normal-based methods. For smaller mean
rates and shorter measurement interval time,
our model is expected to be more suitable. Note
that we are studying how to relax such limi-
tations. Furthermore, our method is compu-
tationally light-weight, which makes real-time
estimations feasible. We have provided some
examples and shown simulation results, which
indicate potential of our approach.
For development and deployment of practical

methods in actual networks based on our ap-
proach, we have many issues to examine and
solve, such as, reliability and limitation (e.g.,
the acceptable degree of spatial / temporal de-
pendence), distributed simultaneous measure-
ments, and scalability. We should also fur-
ther investigate statistical properties of our es-
timators, quantization techniques, collabora-
tion with the MLE approach, and handling of
time-varying nature (temporal dependence). In
addition, our method may require additional
functions to current routers in order to count
some events in a short interval. However, this
work has provided a starting point to establish
a novel efficient inference of flow characteris-
tics without identifying the flow to which each
packet belongs.
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