661 research outputs found
Angiolymphoid hyperplasia with eosinophilia: efficacy of isotretinoin?
BACKGROUND: Angiolymphoid hyperplasia with eosinophilia (ALHE) is a benign but potentially disfiguring vascular lesion. It is usually characterized by dermal and subcutaneous nodules, primarily in the head and neck region. Spontaneous regression is common, but persistent or recurrent lesions may require treatment. Several treatments have been reported but surgery is the most efficient one. METHODS AND RESULTS: We report a 32-year-old man presenting with multiple nodules on the cheeks, preauricular region and the scalp and who received treatment with isotretinoin (0.5 mg/kg/day) for 1 year with complete resolution of one of his scalp nodules. The rest of the lesions remained stable and were treated with surgical excision without recurrence. CONCLUSION: Isotretinoin may play a role in the treatment of ALHE due to its antiangiogenic properties via a reduction of vascular endothelial growth factor (VEGF) production by keratinocytes
Synergistic effects of H\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e2\u3c/sub\u3e and S\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e8\u3c/sub\u3e\u3csup\u3e2−\u3c/sup\u3e in the gamma radiation induced degradation of congo-red dye: Kinetics and toxicities evaluation
© 2019 Elsevier B.V. Gamma radiation has received increasing attention due to their high potential in degradation of recalcitrant pollutants. Thus in the present study, gamma radiation was used for degradation of congo-red (CR) dye, a highly toxic and carcinogenic pollutant, in the presence of H2O2 and S2O82−. The CR was significantly degraded by gamma radiation (i.e., 53%), however, presence of H2O2 and S2O82− promoted degradation of CR to 98 and 87%, respectively, at 1184 Gy absorbed dose. The radical scavengers and electron spin resonance studies revealed that gamma radiation decompose H2O2 and S2O82− into [rad]OH and SO4[rad]− and both [rad]OH and SO4[rad]− caused degradation of CR. The CR showed high reactivity, i.e., 3.25 × 109 and 8.50 × 108 M−1 s−1 with [rad]OH and SO4[rad]−, respectively, and removal of CR was inhibited in the presence of [rad]OH and SO4[rad]− scavengers. The removal of CR was promoted with elevating initial concentrations of H2O2 and S2O82− and decreasing initial concentrations of CR. pH of aqueous solution also significantly influenced removal of the dye. The proposed degradation pathways of CR were established from the [rad]OH mediated degradation of CR and nature of identified degradation products. The greater mineralization of CR, formation of small molecular mass degradation product, and decline in concentration of acetate after extended treatment suggest the gamma-ray mediated peroxide based process to be a promising alternative for potential degradation of CR
Positive Result in the Early Passive Phase of the Tilt-table Test: A Predictor of Neurocardiogenic Syncope in Young Men
Background/Aims: This study elucidated the prognostic factors for neurocardiogenic syncope in males in their late teens and early twenties. Methods: Tilt-table testing (TTT) was performed on 665 males (age range, 17 to 27 years) following the Italian protocol. The subjects were tilted head-up at a 70 ° angle on a table for 30 minutes during the passive phase. If the passive phase was negative, the subjects were given sublingual nitroglycerin and tilted to the same angle for 20 minutes during the drugprovocation phase. The subjects with positive results were followed without medication. We analyzed factors related to the recurrence rate of syncope. Results: Of 305 subjects (45.8%) with positive results, 223 (age range, 18 to 26 years) were followed for 12 months. The frequency of previous syncopal episodes ≥ 4 (p = 0.001) and a positive result during the passive phase (p = 0.022) were significantly related to a high recurrence rate. A positive result during the early passive phase ( ≤ 12 minutes) was significantly related to a higher recurrence rate than was that during the late passive phase (> 12 minutes; p = 0.011). Conclusions: A positive result during the early passive phase of TTT and frequent previous syncopal episodes were prognostic factors for neurocardiogenic syncope in men in their late teens and early twenties. Keywords: Syncope, vasovagal; Prognosis; Tilt-table tes
Identification of a structural element of the hepatitis C virus minus strand RNA involved in the initiation of RNA synthesis
The replication of the genomic RNA of the hepatitis C virus (HCV) of positive polarity involves the synthesis of a replication intermediate of negative polarity by the viral RNA-dependent RNA polymerase (NS5B). In vitro and likely in vivo, the NS5B initiates RNA synthesis without primers. This de novo mechanism needs specific interactions between the polymerase and viral RNA elements. Cis-acting elements involved in the initiation of (–) RNA synthesis have been identified in the 3′ non-coding region and in the NS5B coding region of the HCV RNA. However, the detailed contribution of sequences and/or structures of (–) RNA involved in the initiation of (+) RNA synthesis has been less studied. In this report, we identified an RNA element localized between nucleotides 177 and 222 from the 3′-end of the (–) RNA that is necessary for efficient initiation of RNA synthesis by the recombinant NS5B. By site-directed mutagenesis experiments, we demonstrate that the structure rather than the primary sequence of this domain is important for RNA synthesis. We also demonstrate that the intact structure of this RNA element is also needed for efficient RNA synthesis when the viral NS5B functions in association with other viral and cellular proteins in cultured hepatic cells
Rhodium Nanoparticle Shape Dependence in the Reduction of NO by CO
The shape dependence of the catalytic reduction of nitric oxide by carbon monoxide on rhodium nanopolyhedra and nanocubes was studied from 230 to 270 degrees C. The nanocubes are found to exhibit higher turnover frequency and lower activation energy than the nanopolyhedra. These trends are compared to previous studies on Rh single crystals.Chemistry, PhysicalSCI(E)EI21ARTICLE3-4317-32213
The Trypanosoma cruzi Sylvio X10 strain maxicircle sequence: the third musketeer
<p>Abstract</p> <p>Background</p> <p>Chagas disease has a diverse pathology caused by the parasite <it>Trypanosoma cruzi</it>, and is indigenous to Central and South America. A pronounced feature of the trypanosomes is the kinetoplast, which is comprised of catenated maxicircles and minicircles that provide the transcripts involved in uridine insertion/deletion RNA editing. <it>T. cruzi </it>exchange genetic material through a hybridization event. Extant strains are grouped into six discrete typing units by nuclear markers, and three clades, A, B, and C, based on maxicircle gene analysis. Clades A and B are the more closely related. Representative clade B and C maxicircles are known in their entirety, and portions of A, B, and C clades from multiple strains show intra-strain heterogeneity with the potential for maxicircle taxonomic markers that may correlate with clinical presentation.</p> <p>Results</p> <p>To perform a genome-wide analysis of the three maxicircle clades, the coding region of clade A representative strain Sylvio X10 (a.k.a. Silvio X10) was sequenced by PCR amplification of specific fragments followed by assembly and comparison with the known CL Brener and Esmeraldo maxicircle sequences. The clade A rRNA and protein coding region maintained synteny with clades B and C. Amino acid analysis of non-edited and 5'-edited genes for Sylvio X10 showed the anticipated gene sequences, with notable frameshifts in the non-edited regions of Cyb and ND4. Comparisons of genes that undergo extensive uridine insertion and deletion display a high number of insertion/deletion mutations that are likely permissible due to the post-transcriptional activity of RNA editing.</p> <p>Conclusion</p> <p>Phylogenetic analysis of the entire maxicircle coding region supports the closer evolutionary relationship of clade B to A, consistent with uniparental mitochondrial inheritance from a discrete typing unit TcI parental strain and studies on smaller fragments of the mitochondrial genome. Gene variance that can be corrected by RNA editing hints at an unusual depth for maxicircle taxonomic markers, which will aid in the ability to distinguish strains, their corresponding symptoms, and further our understanding of the <it>T. cruzi </it>population structure. The prevalence of apparently compromised coding regions outside of normally edited regions hints at undescribed but active mechanisms of genetic exchange.</p
Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy
The advancement of techniques that can probe the behaviour of individual nanoscopic objects is of paramount importance
in various disciplines, including photonics and electronics. As it provides images with a spatiotemporal resolution,
four-dimensional electron microscopy, in principle, should enable the visualization of single-nanoparticle structural
dynamics in real and reciprocal space. Here, we demonstrate the selectivity and sensitivity of the technique by visualizing
the spin crossover dynamics of single, isolated metal–organic framework nanocrystals. By introducing a small aperture in
the microscope, it was possible to follow the phase transition and the associated structural dynamics within a single
particle. Its behaviour was observed to be distinct from that imaged by averaging over ensembles of heterogeneous
nanoparticles. The approach reported here has potential applications in other nanosystems and those that undergo
(bio)chemical transformations
Dehydrocostuslactone Suppresses Angiogenesis In Vitro and In Vivo through Inhibition of Akt/GSK-3β and mTOR Signaling Pathways
The traditional Chinese medicine component dehydrocostuslactone (DHC) isolated from Saussurea costus (Falc.) Lipschitz, has been shown to have anti-cancer activity. Angiogenesis is an essential process in the growth and progression of cancer. In this study, we demonstrated, for the first time, the anti-angiogenic mechanism of action of DHC to be via the induction of cell cycle progression at the G0/G1 phase due to abrogation of the Akt/glycogen synthase kinase-3β (GSK-3β)/cyclin D1 and mTOR signaling pathway. First, we demonstrated that DHC has an anti-angiogenic effect in the matrigel-plug nude mice model and an inhibitory effect on human umbilical vein endothelial cell (HUVEC) proliferation and capillary-like tube formation in vitro. DHC caused G0/G1 cell cycle arrest, which was associated with the down-regulation of cyclin D1 expression, leading to the suppression of retinoblastoma protein phosphorylation and subsequent inhibition of cyclin A and cdk2 expression. With respect to the molecular mechanisms underlying the DHC-induced cyclin D1 down-regulation, this study demonstrated that DHC significantly inhibits Akt expression, resulting in the suppression of GSK-3β phosphorylation and mTOR expression. These effects are capable of regulating cyclin D1 degradation, but they were significantly reversed by constitutively active myristoylated (myr)-Akt. Furthermore, the abrogation of tube formation induced by DHC was also reversed by overexpression of Akt. And the co-treatment with LiCl and DHC significantly reversed the growth inhibition induced by DHC. Taken together, our study has identified Akt/GSK-3β and mTOR as important targets of DHC and has thus highlighted its potential application in angiogenesis-related diseases, such as cancer
- …