10,149 research outputs found

    Two-Photon Beatings Using Biphotons Generated from a Two-Level System

    Full text link
    We propose a two-photon beating experiment based upon biphotons generated from a resonant pumping two-level system operating in a backward geometry. On the one hand, the linear optical-response leads biphotons produced from two sidebands in the Mollow triplet to propagate with tunable refractive indices, while the central-component propagates with unity refractive index. The relative phase difference due to different refractive indices is analogous to the pathway-length difference between long-long and short-short in the original Franson interferometer. By subtracting the linear Rayleigh scattering of the pump, the visibility in the center part of the two-photon beating interference can be ideally manipulated among [0, 100%] by varying the pump power, the material length, and the atomic density, which indicates a Bell-type inequality violation. On the other hand, the proposed experiment may be an interesting way of probing the quantum nature of the detection process. The interference will disappear when the separation of the Mollow peaks approaches the fundamental timescales for photon absorption in the detector.Comment: to appear in Phys. Rev. A (2008

    Bell inequalities for three particles

    Full text link
    We present tight Bell inequalities expressed by probabilities for three four- and five-dimensional systems. The tight structure of Bell inequalities for three dd-dimensional systems (qudits) is proposed. Some interesting Bell inequalities of three qubits reduced from those of three qudits are also studied.Comment: 8 pages, 3 figures. Accepted for publication in Phys. Rev.

    Detecting Full N-Particle Entanglement in Arbitrarily High-Dimensional Systems with Bell-Type Inequality

    Full text link
    We derive a set of Bell-type inequalities for arbitrarily high-dimensional systems, based on the assumption of partial separability in the hybrid local-nonlocal hidden variable model. Partially entangled states would not violate the inequalities, and thus upon violation, these Bell-type inequalities are sufficient conditions to detect the full NN-particle entanglement and validity of the hybrid local-nonlocal hidden variable description.Comment: 6 page

    Greenberger-Horne-Zeilinger paradoxes from qudit graph states

    Full text link
    One fascinating way of revealing the quantum nonlocality is the all-versus-nothing test due to Greenberger, Horne, and Zeilinger (GHZ) known as GHZ paradox. So far genuine multipartite and multilevel GHZ paradoxes are known to exist only in systems containing an odd number of particles. Here we shall construct GHZ paradoxes for an arbitrary number (greater than 3) of particles with the help of qudit graph states on a special kind of graphs, called as GHZ graphs. Based on the GHZ paradox arising from a GHZ graph, we derive a Bell inequality with two dd-outcome observables for each observer, whose maximal violation attained by the corresponding graph state, and a Kochen-Specker inequality testing the quantum contextuality in a state-independent fashion

    Isolated and non-isolated dwarfs in terms of modified Newtonian dynamics

    Get PDF
    Within the framework of modified Newtonian dynamics (MOND) we investigate the kinematics of two dwarf spiral galaxies belonging to very different environments, namely KK 246 in the Local Void and Holmberg II in the M81 group. A mass model of the rotation curve of KK 246 is presented for the first time, and we show that its observed kinematics are consistent with MOND. We re-derive the outer rotation curve of Holmberg II, by modelling its HI data cube, and find that its inclination should be closer to face-on than previously derived. This implies that Holmberg II has a higher rotation velocity in its outer parts, which, although not very precisely constrained, is consistent with the MOND prediction.Comment: Accepted in A&A as a Research Note. 6 pages, 3 figure

    Testing tripartite Mermin inequalities by spectral joint-measurements of qubits

    Full text link
    It is well known that Bell inequality supporting the local realism can be violated in quantum mechanics. Numerous tests of such a violation have been demonstrated with bipartite entanglements. Using spectral jointmeasurements of the qubits, we here propose a scheme to test the tripartite Mermin inequality (a three-qubit Bell-type inequality) with three qubits dispersively-coupled to a driven cavity. First, we show how to generate a three-qubit Greenberger-Horne-Zeilinger (GHZ) state by only one-step quantum operation. Then, spectral joint-measurements are introduced to directly confirm such a tripartite entanglement. Assisted by a series of single-qubit operations, these measurements are further utilized to test the Mermin inequality. The feasibility of the proposal is robustly demonstrated by the present numerical experiments.Comment: 7pages,3figure

    Gisin's Theorem for Three Qubits

    Full text link
    We present a Theorem that all generalized Greenberger-Horne-Zeilinger states of a three-qubit system violate a Bell inequality in terms of probabilities. All pure entangled states of a three-qubit system are shown to violate a Bell inequality for probabilities; thus, one has Gisin's theorem for three qubits.Comment: 5 pages, 2 figures. v2: journal-ref is added and some corrections are mad

    Quantum Separability of Thermal Spin One Boson Systems

    Full text link
    Using the temperature Green's function approach we investigate entanglement between two non-interacting spin 1 bosons in thermal equilibrium. We show that, contrary to the fermion case, the entanglement is absent in the spin density matrix. Separability is demonstrated using the Peres-Horodecki criterion for massless particles such as photons in black body radiation. For massive particles, we show that the density matrix can be decomposed with separable states.Comment: References & comments related to AQFT added. no figure, revtex4, to be published in Phys. Lett.

    Multi-Component Bell Inequality and its Violation for Continuous Variable Systems

    Full text link
    Multi-component correlation functions are developed by utilizing d-outcome measurements. Based on the multi-component correlation functions, we propose a Bell inequality for bipartite d-dimensional systems. Violation of the Bell inequality for continuous variable (CV) systems is investigated. The violation of the original Einstein-Podolsky-Rosen state can exceed the Cirel'son bound, the maximal violation is 2.96981. For finite value of squeezing parameter, violation strength of CV states increases with dimension d. Numerical results show that the violation strength of CV states with finite squeezing parameter is stronger than that of original EPR state.Comment: 5 pages and 1 figure, rewritten version, accepted by Phys. Rev.
    corecore