53 research outputs found

    The nucleoside and nucleotide mixture (OG-VI) rescues intestinal-like epithelial cells from the cytotoxicity of chemotherapeutic agents

    Get PDF
    Immune cells and cells undergoing rapid turn-over can obtain exogenous nucleotides via salvage synthesis. We evaluated whether or not the balanced nucleoside and nucleotide mixture OG-VI, could rescue intestinal epithelial-like Caco-2 cells from the cytotoxic effects of several chemotherapeutic agents, in the presence and absence of glutamine (Gln). Cells were exposed to 5-fluorouracil (5FU), methotrexate (MTX) or 6-mercaptopurine (6MP), after which proliferation and cell cycle analyses were performed. Following exposure to the chemotherapeutic agents, we observed that cells treated with OG-VI proliferated well, whereas those without the supplement did not proliferate. Furthermore, following treatment with either 5FU or MTX, we observed that the number of cells in the G0/G1 phase decreased and those in the S phases increased. However, these cell cycle alterations were prevented by the addition of OG-VI. With the exception of 6MP-treated cells, we did not observe any effects on proliferation or cell cycle regulation that could be ascribed to the presence of Gln. Thus, we have demonstrated that OG-VI rescues cells from the cytotoxic effects of several chemotherapeutic agents

    O2-Filled Swimbladder Employs Monocarboxylate Transporters for the Generation of O2 by Lactate-Induced Root Effect Hemoglobin

    Get PDF
    The swimbladder volume is regulated by O2 transfer between the luminal space and the blood In the swimbladder, lactic acid generation by anaerobic glycolysis in the gas gland epithelial cells and its recycling through the rete mirabile bundles of countercurrent capillaries are essential for local blood acidification and oxygen liberation from hemoglobin by the “Root effect.” While O2 generation is critical for fish flotation, the molecular mechanism of the secretion and recycling of lactic acid in this critical process is not clear. To clarify molecules that are involved in the blood acidification and visualize the route of lactic acid movement, we analyzed the expression of 17 members of the H+/monocarboxylate transporter (MCT) family in the fugu genome and found that only MCT1b and MCT4b are highly expressed in the fugu swimbladder. Electrophysiological analyses demonstrated that MCT1b is a high-affinity lactate transporter whereas MCT4b is a low-affinity/high-conductance lactate transporter. Immunohistochemistry demonstrated that (i) MCT4b expresses in gas gland cells together with the glycolytic enzyme GAPDH at high level and mediate lactic acid secretion by gas gland cells, and (ii) MCT1b expresses in arterial, but not venous, capillary endothelial cells in rete mirabile and mediates recycling of lactic acid in the rete mirabile by solute-specific transcellular transport. These results clarified the mechanism of the blood acidification in the swimbladder by spatially organized two lactic acid transporters MCT4b and MCT1b

    Biological mechanism and clinical effect of protein-bound polysaccharide K (KRESTIN®): review of development and future perspectives

    Get PDF
    The mechanism of action of protein-bound polysaccharide K (PSK; KRESTIN®) involves the following actions: (1) recovery from immunosuppression induced by humoral factors such as transforming growth factor (TGF)-β or as a result of surgery and chemotherapy; (2) activation of antitumor immune responses including maturation of dendritic cells, correction of Th1/Th2 imbalance, and promotion of interleukin-15 production by monocytes; and (3) enhancement of the antitumor effect of chemotherapy by induction of apoptosis and inhibition of metastasis through direct actions on tumor cells. The clinical effectiveness of PSK has been demonstrated for various cancers. In patients with gastric or colorectal cancer, combined use of PSK with postoperative adjuvant chemotherapy prolongs survival, and this effect has been confirmed in multiple meta-analyses. For small-cell lung carcinoma, PSK in conjunction with chemotherapy prolongs the remission period. In addition, PSK has been shown to be effective against various other cancers, reduce the adverse effects of chemotherapy, and improve quality of life. Future studies should examine the effects of PSK under different host immune conditions and tumor properties, elucidate the mechanism of action exhibited in each situation, and identify biomarkers

    Chemical Sensors Based on Cyclodextrin Derivatives

    Get PDF
    This review focuses on chemical sensors based on cyclodextrin (CD) derivatives. This has been a field of classical interest, and is now of current interest for numerous scientists. First, typical chemical sensors using chromophore appended CDs are mentioned. Various “turn-off†and “turn-on†fluorescent chemical sensors, in which fluorescence intensity was decreased or increased by complexation with guest molecules, respectively, were synthesized. Dye modified CDs and photoactive metal ion-ligand complex appended CDs, metallocyclodextrins, were also applied for chemical sensors. Furthermore, recent novel approaches to chemical sensing systems using supramolecular structures such as CD dimers, trimers and cooperative binding systems of CDs with the other macrocycle [2]rotaxane and supramolecular polymers consisting of CD units are mentioned. New chemical sensors using hybrids of CDs with p-conjugated polymers, peptides, DNA, nanocarbons and nanoparticles are also described in this review

    Lattice Design of a Proton Synchrotron for Medical Use

    Get PDF
    corecore