155 research outputs found

    Differentiating comorbidities and predicting prognosis in idiopathic normal pressure hydrocephalus using cerebrospinal fluid biomarkers: a review

    Get PDF
    Idiopathic normal pressure hydrocephalus (iNPH) is a condition resulting from impaired cerebrospinal fluid (CSF) absorption and excretion characterized by a triad of symptoms comprising dementia, gait disturbance (impaired trunk balance), and urinary incontinence. CSF biomarkers not only assist in diagnosis but are also important for analyzing the pathology and understanding appropriate treatment indications. As the neuropathological findings characteristic of iNPH have yet to be defined, there remains no method to diagnose iNPH with 100% sensitivity and specificity. Neurotoxic proteins are assumed to be involved in the neurological symptoms of iNPH, particularly the appearance of cognitive impairment. The symptoms of iNPH can be reversed by improving CSF turnover through shunting. However, early diagnosis is essential as once neurodegeneration has progressed, pathological changes become irreversible and symptom improvement is minimal, even after shunting. Combining a variety of diagnostic methods may lead to a more definitive diagnosis and accurate prediction of the prognosis following shunt treatment. Identifying comorbidities in iNPH using CSF biomarkers does not contraindicate shunting-based intervention, but does limit the improvement in symptoms it yields, and provides vital information for predicting post-treatment prognosi

    Erythropoietin Receptor Signaling Mitigates Renal Dysfunction-Associated Heart Failure by Mechanisms Unrelated to Relief of Anemia

    Get PDF
    ObjectivesWe examined the effect of asialoerythropoietin (asialoEPO), a nonerythrogenic derivative of erythropoietin (EPO), on renal dysfunction-associated heart failure.BackgroundAlthough EPO is known to exert beneficial effects on cardiac function, the clinical benefits in patients with chronic kidney disease are controversial. It remains to be addressed whether previously reported outcomes were the result of relief of the anemia, adverse effects of EPO, or direct cardiovascular effects.MethodsMice underwent 5/6 nephrectomy to cause renal dysfunction. Eight weeks later, when renal dysfunction was established, anemia and cardiac dysfunction and remodeling were apparent. Mice were then assigned to receive saline (control), recombinant human erythropoietin (rhEPO) at 5,000 IU (714 pmol)/kg, or asialoEPO at 714 pmol/kg, twice/week for 4 weeks.ResultsAlthough only rhEPO relieved the nephrectomy-induced anemia, both rhEPO and asialoEPO significantly and similarly mitigated left ventricular dilation and dysfunction. The hearts of rhEPO- or asialoEPO-treated mice showed less hypertrophy, reflecting decreases in cardiomyocyte hypertrophy and degenerative subcellular changes, as well as significant attenuation of fibrosis, leukocyte infiltration, and oxidative deoxyribonucleic acid damage. These phenotypes were accompanied by restored expression of GATA-4, sarcomeric proteins, and vascular endothelial growth factor and decreased inflammatory cytokines and lipid peroxidation. Finally, myocardial activation was observed of extracellular signal-regulated protein kinase and signal transducer and activator of transcription pathways in the treated mice.ConclusionsEPO receptor signaling exerts direct cardioprotection in an animal model of renal dysfunction-associated heart failure, probably by mitigating degenerative, pro-fibrosis, inflammatory, and oxidative processes but not through relief of anemia

    Dynamic Changes in Ultrastructure of the Primary Cilium in Migrating Neuroblasts in the Postnatal Brain

    Get PDF
    New neurons, referred to as neuroblasts, are continuously generated in the ventricular-subventricular zone of the brain throughout an animal's life. These neuroblasts are characterized by their unique potential for proliferation, formation of chain-like cell aggregates, and long-distance and high-speed migration through the rostral migratory stream (RMS) toward the olfactory bulb (OB), where they decelerate and differentiate into mature interneurons. The dynamic changes of ultrastructural features in postnatal-born neuroblasts during migration are not yet fully understood. Here we report the presence of a primary cilium, and its ultrastructural morphology and spatiotemporal dynamics, in migrating neuroblasts in the postnatal RMS and OB. The primary cilium was observed in migrating neuroblasts in the postnatal RMS and OB in male and female mice and zebrafish, and a male rhesus monkey. Inhibition of intraflagellar transport molecules in migrating neuroblasts impaired their ciliogenesis and rostral migration toward the OB. Serial section transmission electron microscopy revealed that each migrating neuroblast possesses either a pair of centrioles or a basal body with an immature or mature primary cilium. Using immunohistochemistry, live imaging, and serial block-face scanning electron microscopy, we demonstrate that the localization and orientation of the primary cilium are altered depending on the mitotic state, saltatory migration, and deceleration of neuroblasts. Together, our results highlight a close mutual relationship between spatiotemporal regulation of the primary cilium and efficient chain migration of neuroblasts in the postnatal brain

    Observations of turbulent mixing in Tropical Tropopause Layer (TTL)

    Get PDF
    [The 5th Asia Research Node Symposium on Humanosphere Science] Date: December 22-23, 2020 : Venue: Symposium goes Onlin
    corecore