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1. Introduction  

The soybean cyst nematode (SCN) Heterodera glycines Ichinohe, is widely distributed in 
soybean-producing countries. The losses in total yield caused by SCN are greater than those 
for any other pest of soybean (Wrather et al., 2001). These nematodes have generally been 
controlled by rotating soybeans with nonhost crops, planting of resistant cultivars, 
application of effective nematocides and organic materials, and physical control techniques 
such as solarisation. The combination of biological control with above methods will enhance 
the effectiveness of nematode control.  Recently, numerous studies have been conducted on 
the fungal antagonist of SCNs (Chen and Dickson, 1996; Kim and Riggs, 1991, 1995; Liu and 
Chen, 2001; Meyer and Huettel, 1996; Meyer and Meyer, 1996; Timper et al., 1999); however,  
few biological control agents have been commercialized to date. 
Lecanicillium spp. (formally, Verticillium lecanii) have been studied as potential biological 
control agents for SCN. Entomopathogenic Lecanicillium spp. are ubiquitously distributed in 
soils, although these fungi are mainly isolated from insects. Numerous strains have been 
commercialized worldwide as biopesticides namely of aphids, thrips and mites (Faria and 
Wraight, 2007; Kabaluk et al, 2010) . In addition, it is known that Lecanicillium spp. have a 
broad host range, e.g., insects, phytopathogenic fungi, and plant-parasitic nematodes (Hall, 
1981; Meyer et al., 1990; Goettel et al., 2008) providing the possibility that strains could be 
found that could be developed for simultaneous control of multiple pest problems. For 
instance, a strain of L. longisporum was found to effectively control both cucumber powdery 
mildew and aphids (Kim et al, 2007, 2008, 2010). 
One strain of Lecanicillium sp was found to exhibit high virulence to SCNs, although it was 
found to be a poor colonizer of the soybean rhizosphere (Meyer and Wergin, 1998). 
However, it is quite likely that other strains are more aggressive rhizosphere colonizers 
because Lecanicillium spp. (V. lecanii) possess varied abilities among different strains 
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(Sugimoto et al., 2003). The objective of this chapter is to review the development of 
entomopathogenic Lecanicillium hybrid strains with effects on the SCN, and discuss the 
future prospects for its use in the biological control of the SCN. 

2. Genus Lecanicillium, as pathogen of plant parasitic nematodes 

Until recently, the form genus Verticillium contained a wide variety of species with diverse 
host ranges including arthropods, nematodes, plants and fungi (Zare and Gams, 2001). The 
genus has been recently redefined using rDNA sequencing, placing all insect pathogens into 
the new genus Lecanicillium (Zare et al., 2000; Gams and Zare, 2001; Zare and Gams, 2001). 
These include L. attenuatum, L. lecanii, L. longisporum, L. muscarium and L. nodulosum, which 
were all formerly classified as V. lecanii. These recent reclassifications bring forth the 
possibility that several different species were actually involved in previous studies. There is 
also evidence that in recent literature, some authors have simply replaced the genus name 
Verticillium with Lecanicillium without conducting the necessary rDNA sequencing, adding 
to the confusion (Sugimoto et al., 2003; Koike et al., 2007a). In this review, we refer to the 
former name, Verticillium lecanii, as Lecanicillium spp. unless it is specifically known that the 
species in question was verified using the new nomenclature. 
Species of Lecanicillium are well known and important nematophagous fungi with potential 
for development as biopesticides against plant-parasitic nematodes. For instance, L. 
psalliotae, L. antillanum, and other Lecanicillium spp. infect the eggs of the root-knot nematode 
Meloidogyne incognita (Gan et al., 2007; Nguyen et al., 2007). Lecanicillium spp. infect females, 
cysts and eggs of Heterodera glycines, the soybean cyst nematode (SCN), reducing nematode 
populations in laboratory and greenhouse studies (Meyer et al., 1997). Mutant strains of an 
SCN active strain were induced through UV radiation which resulted in increased efficacy 
against this nematode (Meyer and Meyer, 1996). 
Some reports indicated that immature eggs are more susceptible to fungal attack than the 
mature eggs containing second stage juveniles (J2) (Chen and Chen, 2003; Irving and Kerry, 
1986; Kim and Riggs, 1991). Furthermore, Meyer et al. (1990) demonstrated that one strain of 
Lecanicillium sp. (as V. lecanii) decreased the number of viable SCN eggs from yellow 
females, whereas the viability of eggs from cysts was not affected. This strain also reduced 
the viability of SCN eggs without colonization of the egg; however, no such effect was 
observed in other strains. This suggested that V. lecanii produced a natural substance that 
could affect egg viability and there was a remarkable variation in the ability for producing 
such a substance among strains.  

3. Genetic improvement of entomopathogenic Lecanicillium spp. using 
protoplast fusion 

Mycotal® (L. muscarium) and Vertalec® (L. longisporum) are strains commercialized by 
Koppert, The Netherlands, for insect control. Strain B-2 of L. muscarium, which was isolated 
from the peach aphid (Myzus persicae) in Japan, has high epiphytic ability on cucumber leaves 
(Koike et al., 2004). Protoplast fusion was performed using three strains of Lecanicillium spp. 
(as V. lecanii) to obtain new strains possessing useful characteristics as biological control agents 
(Aiuchi et al. 2004, 2008). From the combination of Vertalec-Mycotal, B-2 -Mycotal, and B-2-
Vertalec, many hybrid strains were detected. Nit (nitrate non-utilizing) mutants (Correll et al., 
1987) were used for visually selecting protoplasts (Fig.1). 
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Fig. 1. Model for identification of hybrids on protoplast fusion procedure and selection 
sequence for hybrid strains of Lecanicillium spp.  A) Protoplast fusion was conducted on 
complemental combination of nit mutants. B) Protoplast suspension after fusion treatment 
contain heterokaryon, diploid, homokaryon (self-fusing) and nit mutant (non-fusing). C) 
Only heterokaryon and diploid could develop the colony as prototrophic growth on 
minimal medium.  D) Screening procedure based on various parameters and candidates of 
hybrid strains as BCAs.  

The morphological characteristics of the hybrid strains differed from those of their parental 
nit mutants. Furthermore, genomic analyses were done to ascertain the success of protoplast 
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fusion. These confirmed protoplast fusions were in genomic DNA but not in mitochondrial 
DNA (mtDNA). In both analyses, they observed a uniform biased tendency of the banding 
pattern, depending on the combination of the parental strains. Some of these genomic 
analyses confirmed successful fusion and/or genetic recombination. These results 
demonstrated the usefulness of conducting genomic analyses such as polymerase chain 
reaction-restriction fragment length polymorphism, arbitrarily primed-PCR and genome 
profiling for discovering nucleotides that exhibit high polymorphism in order to ascertain 
success of protoplast fusion (Aiuchi et al., 2008, Kaibara et al., 2010). 
Further studies were conducted to screen desirable Lecanicillium hybrid strains that have a 

wide host range or increased efficacy (Aiuchi et al., 2007). Initially, 43 hybrid strains were 

used in bioassays against the cotton aphid, Aphis gossypii. Of these, 30 strains induced 

mortality equal to or higher than Vertalec (42%). Secondly, 50 hybrid strains were used in 

bioassays against the greenhouse whitefly, Trialeurodes vaporariorum. Of these, 37 strains 

exhibited an equal or higher infection rate as compared to that of Mycotal (36.2%). Finally, 

50 hybrid strains were applied to cucumber leaves in order to test strain viability under low 

humidity conditions (ca.13% RH). Two weeks after application, 17 hybrid strains exhibited 

viabilities equal to or higher than B-2 (1.5 × 103 cfu/cm2). These results identified hybrid 

strains whose parental characteristics had not only recombined but also whose 

pathogenicity or viability had improved, with a hybrid isolate even producing conidia on a 

leaf hair. Finally, 13 candidate hybrid strains were selected that exhibited improved 

qualities, and these hybrid strains can be expected to be highly effective as biological control 

agents (Fig.1).  

3.1 Selection of Lecanicillium hybrid strains against the SCN  
Shinya et al. (2008a) investigated whether the protoplast fusion technique was an effective 

tool for development of more efficient nematode control agents. Three parental strains 

(Vertalec, Mycotal, and B-2) and their 162 hybrid strains were screened in greenhouse pot 

tests against the soybean cyst nematode H. glycines. Some of these hybrid strains reduced 

the density of SCN in the soil and suppressed damage to soybean plants. In particular, one 

hybrid strain, AaF42 (Vertalec: L. longisporum ×Mycotal: L. muscarium), reduced nematode 

egg density by 93% as compared with the control providing excellent protection to soybean 

plants. Furthermore, this strain significantly reduced cyst and egg densities compared to the 

parental strains (Fig.2, Table 1).  

 

 

Fig. 2. Lecanicillium hybrid strain AaF42 (Vertalec × Mycotal) protected soybean plants from 
soybean cyst nematode (Heterodera glycine) 4, 6 and 8 weeks after treatment in SCN infested 

soilθShinya et al. 2008aχ. 
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The values are the means ± standard deviation of three replicates. The different letters in the columns 
indicate significant differences (P < 0.01, Tukey’s HSD test). 
1 The hybrid strains, AaF were derived from protoplast fusion of Vertalec × Mycotal. 
2 Control 1: SCN was inoculated but fungus was not. 
3 Control 2: Neither SCN nor fungus was inoculated. 
4 ND: not detected. 

Table 1. The effects of selected strains of Verticillium lecanii on the density of Heterodera 
glycine cysts and eggs, and the growth of soybean roots in pots (Shinya et al., 2008a). 

3.2 Effects of culture filtrates of the Lecanicillium hybrid strains to SCN 
Shinya et al. (2008b) also evaluated the effects of fungal culture filtrates of the Lecanicillium 

hybrid strains on mature eggs, embryonated eggs (eggs fertilized but without development 

of juveniles), and J2 of SCN and compared these effects to those of their parental strains. The 

fungal culture filtrates of some hybrid strains inhibited egg hatch of mature eggs. 

Furthermore, the fungal culture filtrates of two hybrid strains, AaF23 and AaF42 (Vertalec: 

L. longisporum× Mycotal: L. muscarium), exhibited high toxicity against embryonated eggs. 

However, most of the fungal culture filtrates did not inactivate J2.  

These results suggested that the enzymes or other active compounds in the fungal culture 

filtrates exhibit activity against specific stages in the SCN life cycle. In addition, based on a 

visual assessment of the morphological changes in eggs caused by filtrates of each strain, 

there were differences between the hybrid strains and their respective parental strains with 

regard to the active substances produced by Lecanicillium spp. against the embryonated eggs 

(Fig. 3). It is known that some entomopathogenic fungi produced nematicidal and 

insecticidal metabolites, for example entomopathogenic Verticillium sp. FKI-1033 

(Lecanicillium sp.) produced Verticilide (Shiomi et al., 2006). As a result of promoting 

recombination of whole genomes via protoplast fusion, several hybrid strains may have 

enhanced production of active substances that are different from those produced by their 

parental strains. It was concluded that natural substances produced by Lecanicillium hybrids 

are important factors involved in the suppression of SCN damage.  

3.3 Parasitism of the Lecanicillium hybrid strains to SCN 
Shinya et al., (2008c) also investigated the pathogenicity and mode of action of the 
Lecanicillium hybrid strains to the sedentary stages of SCN. Three different sedentary stages 
(pale yellow female, yellow brown cyst, and dark brown cyst) of SCN were treated and 
incubated on water agar. After 3 weeks incubation, eggs were investigated for the following: 
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Fig. 3. Effect of fungal culture filtrates on the development of embryonated eggs. (a) Mature 
eggs containing J2 in the control well after 10 days incubation. (b) Abnormal eggs treated 
with fungal culture filtrates of Lecanicillium hybrid strain AaF23 after 10 days incubation 
(Shinya et al., 2008b). 

(i) the infection frequencies of eggs, (ii) the number of eggs laid, and (iii) the number of 
mature and healthy eggs. Subsequently, the fecundity of SCN treated with the Lecanicillium 
hybrids was investigated in greater detail.  
Most Lecanicillium hybrid strains examined appeared to have higher infection rates of pale 
yellow female (PYF) eggs than those of yellow brown cysts (YBCs) and dark brown cysts 
(DBCs). Meyer and Wergin (1998) reported that cysts tended to be more rapidly colonized 
by V. lecanii (Lecanicillium sp.) than females and also described that the cyst wall apparently 
was not a barrier to V. lecanii, so it is possible that these results show differences in egg 
development. PYFs contained more immature eggs than cysts. It is thought that Lecanicillium 
hybrid strains infected more eggs that had not completed their embryonic development 
than mature eggs containing J2 individuals. 
 

 

Fig. 4. Scanning electron micrographs of Lecanicillium hybrid strain AaF42 infected soybean 
cyst nematodes. A: Colonized mature female, B: Penetration of cyst wall, C: Infected eggs of 
SCN. 

Moreover, infection with some Lecanicillium hybrid strains reduced the number of eggs of 
PYFs. Egg laying by females treated with AaF42 terminated approximately 3 d after 
incubation. The body wall of these females rapidly tanned and the individuals subsequently 
encysted. A cyst can be considered a dead female (Niblack, 2005); therefore, the formation of 
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cysts indicated that females treated with AaF42 died before the completion of egg laying. 
Meyer and Wergin (1998) observed that some females colonized by V. lecanii contained few 
eggs and hypothesized that V. lecanii infected and killed some females before a full 
complement of eggs was produced. Our results also support this hypothesis. In addition, 
Kerry (1990) indicated that V. chlamydosporium (Lecanicillium chladosporia) reduced the 
fecundity of Heterodera schachtii infected individuals forming small cysts containing few 
healthy eggs. In this study, four Lecanicillium hybrid strains (AaF42, AaF17, AaF103, and 
AaF23) that suppressed SCN populations and damage to soybean plants in a preliminary 
greenhouse test tended to reduce the number of eggs and also the number of mature eggs in 
PYFs; however, no significant difference was observed in the effect on YBCs among 
individual strains in YBCs, and AaF42, which caused remarkable suppression of SCN 
populations in a greenhouse test, did not exhibit a high percentage of egg infection in cysts 
(Shinya et al., 2008c). This suggests that Lecanicillium hybrid strains may have colonized and 
rapidly weakened or killed SCN females before the completion of egg laying and reduced 
the number of mature and healthy eggs in soil. 
Since the evaluation method using estimates of the number of mature and healthy eggs  
is largely accurate over several modes of action, it appears that this method is an 
appropriate and simple in vitro test to evaluate the pathogenicity of Lecanicillium hybrid 
strains to nematode eggs. However, testing the efficacy of these fungi in soil is essential, 
since fungi that perform well in laboratory tests may not be effective under field conditions 
(Kerry, 2001). 
Based on the results of this study, we conclude that Lecanicillium hybrid strains are more 

effective against female SCN than against cysts, and the following could be its modes of 

action: (i) the colonization of females and the reduction of their fecundity, (ii) the prevention 

of embryonic development or the killing of immature eggs, and (iii) the infection of 

immature or dead eggs (Fig.4). From this viewpoint, the ability to attack females and the 

ability to colonize soybean root surfaces, from which females emerge, may be important to 

control SCN by Lecanicillium hybrid strains, and at least these two abilities should be high in 

potentially useful strains. It is quite likely that AaF42 which exhibited a high reduction of 

fecundity has high potential as a biological control agent against SCN. 

3.4 Lecanicillium hybrid strain AaF42 as rhizosphere colonizer and endophyte 
There has been little unequivocal evidence of true rhizosphere competence (growth of the 

fungus within the root zone utilizing plant carbon) in entomopathogenic fungi. The 

mechanisms of interaction between fungus and plant root needs to be elucidated (Vega et 

al., 2009).  Gaining an understanding of the population structure of rhizosphere colonizers 

and how they change throughout the season is imperative for development of strategies for 

controlling plant parasitic nematodes, root diseases and improving root health. The current 

soil treatment with methyl bromide: chloropicrin can improve plant growth and yield even 

in the absence of known soilborne pathogens (Martin, 2003).   

The ecology of fungal entomopathogens in the rhizosphere is an understudied area of insect 

pathology. The rhizosphere is the region of soil in which the release of root exudates 

influences the soil microbiota, and may provide a favorable environment for fungal 

entomopathogens (Bruck, 2010). We performed studies to determine the persistence of 

Lecanicillium hybrid strain AaF42 as soybean root colonizer. It was found that AaF42 was a 

better root colonizer compared with parental strains (Vertalec & Mycotal, Fig. 5). 
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Fig. 5. Fungal populations on soybean roots (cfu g-1 fresh weight of root tissue) of 
Lecanicillium hybrid strain AaF42 and the parental strains (Vertalec & Mycotal) using a 
cylinder pot (height 50mm, ɸ 85mm). Dilution plate method was done on the surface of 
soybean roots thus avoiding propagules within the root tissues 

Two weeks after planting soybeans into pots pretreated with the fungi, Mycotal and AaF42 
could be detected ca. 3 X 104  cfu per g root fresh weight and there were no significant 
differences at the soil depth 0~5cm. However, as the soil depth increased, more AaF42 was 
detected than Mycotal.  At four weeks after planting, there was one order difference in 
detection between AaF42 and Mycotal.  In contrast, the detections of Vertalec were nil or 
very low.  Bruck (2010) described the role of fungal entomopathogens in the rhizosphere for 
controlling root-feeding insects. Currently, data on the pest management potential of 
rhizosphere competent fungal entomopathogens are scant. However, the prospective 
ramifications of this relationship are tremendous. A simple calculation of the economic 
benefits that can be realized by utilizing rhizosphere competent fungal entomopathogens 
yields savings significant enough to warrant further investigation (Bruck, 2010). It can be 
said that Lecanicillium hybrid strain AaF42 with high culture filtrate toxicity, pathogenicity 
and parasitisim to SCN, and a good root-colonization ability, shows considerable promise 
for development as a biological control agent for SCN.  
Recently, molecular and micro-ecological trials with  Lecanicillium hybrid strain AaF42 were 
designed to do elucidate the tritrophic interactions among the fungi, SCN and soybean root 
(unpublished data). This was accomplished by employing a gfp gene driven by a constitutive 
promoter which strongly labeled the fungus with no impact on fungal growth or 
pathogenicity (Fig. 6). Preliminary results indicated that AaF42 might act as an endophyte, 
however, further studies are required before firm conclusions can be made. 

3.5 Stage specificity of Lecanicillium against SCN and its importance  
in the control of SCN 
As described above, the stage in the SCN life cycle attacked by Lecanicillium hybrid strain 
AaF42 has a profound effect on the viability of SCN and damage to soybean crops. This is a 
very significant point in the control of plant parasites, especially cyst nematodes. The cyst 
nematodes generally have a high reproductive potential, producing approximately 200-500 
eggs per cyst (female), and they can survive for several years at least in the soil without a 
host plant. Therefore, several thousand nematodes appear in the next generation even if  
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Fig. 6. Lecanicillium hybrid strain AaF42 as possible endophyte (A: AaF42 mycelium with 
normal Lactophenol Cotton Blue Stain, B:  Recombinant AaF42 with GFP gene within 
soybean root tissue) 

only several J2 nematodes successfully invade the root of a host plant. The J2 of cyst 

nematodes which emerge from the eggs can quickly invade roots near the root tip of a host 

plant. Thus, the sedentary stage, especially immature female or immature cyst,  would be 

the most appropriate target stage in the biological control using nematophagous fungi. The 

nematode-trapping fungi, e.g., Arthrobotrys spp., are the well known group of 

nematophagous fungi, probably owing to their remarkable morphological adaptations and 

their dramatic infection of nematodes. However, these fungi are known as a poor colonizers 

of eggs and sedentary stages of cyst nematodes (Chen et al., 1996). From this view point, the 

nematode-trapping fungi seemed to be unsuitable as biological control agents against cyst 

nematode. We demonstrated that Lecanicillium hybrid strain AaF42 has a distinguished 

infectivity against sedentary stages of SCN, especially immature females and eggs, and a 

high ability as root colonizer and endophyte. It would be inferred from these exceptional 

talents that hybrid strain AaF42 has high potential as a biological agent against SCN.  

4. Future prospect (potential of biological control agents for SCN and other 
complex diseases)   

Fungi traditionally known for their entomopathogenic characteristics, such as Beauveria 

bassiana and Lecanicillium spp., have recently been shown to engage in plant-fungus 

interactions (Vega, 2008; Vega et al., 2008), and both have been reported to effectively 

suppress plant disease (Goettel et al. 2008; Ownley et al., 2004, 2008).  Biological control of 

plant pathogens usually refers to the use of microorganisms that reduce the disease causing 

activity or survival of plant pathogens. Several different biological control mechanisms 

against plant pathogens have been identified. The biocontrol organism is directly involved 

in some mechanisms such as antibiosis, competition, and parasitism. With other modes of 

biological control, such as induced systemic resistance and increased growth response, 

endophytic colonization by the biocontrol organism triggers responses in the plant that 

reduce or alleviate plant disease (Ownley et al., 2010).  
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Lecanicillium spp. have activity against numerous phytopathogenic fungi including powdery 

mildews (Verhaar et al., 1997, 1998; Askary et al., 1997, 1998, 1999; Dik et al., 1998; Miller et 

al., 2004), rusts (Spencer and Atkey, 1981; Leinhos and Buchenauer, 1992) green molds 

(Benhamou and Brodeur, 2000) and Pythium (Benhamou and Brodeur, 2001). Fungi that may 

control phytopathogenic fungi can act through antibiosis and mycoparasitism (Kiss, 2003). 

Some Lecanicillium isolates act as mycoparasites, attaching to powdery mildew mycelia and 

conidia, producing enzymes such as chitinase, that allow penetration of the mildew spores 

and hyphae, killing the pathogen (Askary et al., 1997). Leinhos and Buchenauer (1992) 

demonstrated that several Lecanicillium spp. were able to penetrate and colonize uredial sori 

of Puccinia coronata. In Penicillium digitatum, the mode of action was attributed to changes in 

host cells prior to contact by the Lecanicillium spp. (Benhamou and Brodeur, 2000) while in P. 

ultimatum, in addition to mycoparasitism of the plant pathogen, the mode of action was 

linked to colonization of host plant tissues, triggering a plant defense reaction (Benhamou 

and Brodeur, 2001). Hirano et al. (2008) found that applying L. muscarium blastospores to 

cucumber roots induced systemic resistance. L. muscarium pre-inoculated plants suffered 

significantly fewer lesions and reduced disease severity compared with non-inoculated 

plants. Kusunoki et al. (2006) and Koike et al. (2007b) found that root treatment with  

L. muscarium reduced disease incidence and wilting score in other soil-borne disease 

combinations such as tomato—Verticillium dahliae, Japanese radish—V. dahliae, and melon—

Fusarium oxysporum f.sp. melonis. 

In the case of soilborne pathogens, further opportunities exist for interactions with other 

microorganisms occupying the same ecological niche. The significant role of nematodes in 

the development of diseases caused by soilborne pathogens has been demonstrated in many 

crops throughout the world. In many cases, such nematode–fungus disease complexes 

involve root-knot nematodes (Meloidogyne spp.), although several other endoparasitic 

(Globodera spp., Heterodera spp., Rotylenchulus spp., Pratylenchus spp.) and ectoparasitic 

(Xiphinema spp., Longidorus spp.) nematodes have been associated with diseases caused by 

soilborne fungal pathogens (Back et al., 2002). In the case of SCN, Sudden Death Syndrome 

(SDS) caused by F. solani is a major disease of soybean which, among other symptoms, 

induces root rot, crown necrosis, interveinal chlorosis, defoliation and abortion of pods 

(Rupe, 1989; Nakajima et al., 1996). Recent research on SDS has focused on identifying 

genes for dual resistance against both nematode and fungus (Chang et al., 1997; Meksem 

et al., 1999; Prabhu et al., 1999). 

It is known that entomopathogenic Lecanicillium spp. have antagonistic effects to soil-borne 

fungi such as Fusarium oxysporum, F. solany, Pythium spp. and Verticillium dahlia (Koike et al., 

2006, Goettel et al., 2008). Therefore, it might be possible to develop Lecanicillium hybrid 

strains with potential for biological control of a complex of plant diseases, plant parasitic 

nematodes and insect pests. 

5. Conclusion  

Much research is still needed to fully understand the role that rhizosphere competent fungal 

entomopathogenic Lecanicillium hybrid strains play in regulating SCN populations and how 

we can use this knowledge to design and implement more effective SCN biological control 

programs. Questions of particular importance to consider are highlighted by Vega et al. 

(2009) and include the following: (1) Do plants benefit from a rhizosphere association with 
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fungal entomopathogens? (2) Is the ‘bodyguard’ concept relevant in soil? If so, what is the 

signaling mechanism between trophic levels? (3) Do different phylogenetic groups of fungal 

entomopathogens display different strategies in their association with plants? (4) How do 

soil-borne fungal entomopathogens interact between above and below ground ecosystems? 

(5) What is the mechanism of yield increases in biological control target plant?  (6) Does 

plant diversity impact fungal entompathogen diversity at the landscape or local level, and 

what is its impact on natural pest control? In addition to the basic scientific questions posed 

above, there are a number of questions that require further investigation as well: (1) What is 

the most effective approach for inoculating roots with rhizosphere competent isolates? 

Approaches will need to be identified for plants propagated via seed treatment, because 

there are a lot of problems in the direct treatment of soil such as  costs & labor 

requirements. (2) How long do rhizosphere competent isolates persist on the root system 

of soybean or other host plants of plant parasitic nematodes? (3)Will the use of 

rhizosphere competent isolates provide consistent and acceptable levels of pest including 

plant parasitic nematode control?  

At present there has been only limited success with field applications of biological controls 
against SCN. Chen (2004) pointed out factors involved in their biological control, 1) stage of 
nematode infected, 2) ability to colonize soil, roots, cysts and gelatinous matrices, 3) 
competition with other fungi, 4) cropping systems and tillage, and 5) edaphic and 
environmental factors.  In our research, all experiments were done in vitro and in 
glasshouses.  Although there is still much to be learned at the field level, it has been 
demonstrated that Lecanicillium hybrid strains have multiple effects (toxic and parasitism) 
for SCN and soybean plant roots (as root colonizer and endophyte) as well as on plant 
pathogens and insect pests, making these strains promising for development as broad 
spectrum biopesticides that include SCN. 
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