6,065 research outputs found

    A Model for Granular Texture with Steric Exclusion

    Full text link
    We propose a new method to characterize the geometrical texture of a granular packing at the particle scale including the steric hindrance effect. This method is based on the assumption of a maximum disorder (entropy) compatible both with strain-induced anisotropy of the contact network and steric exclusions. We show that the predicted statistics for the local configurations is in a fairly agreement with our numerical data.Comment: 9 pages, 5 figure

    Sheared force-networks: anisotropies, yielding and geometry

    Get PDF
    A scenario for yielding of granular matter is presented by considering the ensemble of force networks for a given contact network and applied shear stress Ď„\tau. As Ď„\tau is increased, the probability distribution of contact forces becomes highly anisotropic, the difference between average contact forces along minor and major axis grows, and the allowed networks span a shrinking subspace of all force-networks. Eventually, contacts start to break, and at the yielding shear stress, the packing becomes effectively isostatic. The size of the allowed subspace exhibits simple scaling properties, which lead to a prediction of the yield stress for packings of arbitrary contact number.Comment: 4 pages, 4 figure

    The Light-Cone Vacuum in 1+1 Dimensional Super-Yang-Mills Theory

    Get PDF
    The Discrete Light-Cone Quantization (DLCQ) of a supersymmetric SU(N) gauge theory in 1+1 dimensions is discussed, with particular emphasis given to the inclusion of all dynamical zero modes. Interestingly, the notorious `zero-mode problem' is now tractable because of special supersymmetric cancellations. In particular, we show that anomalous zero-mode contributions to the currents are absent, in contrast to what is observed in the non-supersymmetric case. We find that the supersymmetric partner of the gauge zero mode is the diagonal component of the fermion zero mode. An analysis of the vacuum structure is provided and it is shown that the inclusion of zero modes is crucial for probing the phase properties of the vacua. In particular, we find that the ground state energy is zero and N-fold degenerate, and thus consistent with unbroken supersymmetry. We also show that the inclusion of zero modes for the light-cone supercharges leaves the supersymmetry algebra unchanged. Finally, we remark that the dependence of the light-cone Fock vacuum in terms of the gauge zero is unchanged in the presence of matter fields.Comment: REVTEX, 15 page

    Bounds on the shear load of cohesionless granular matter

    Full text link
    We characterize the force state of shear-loaded granular matter by relating the macroscopic stress to statistical properties of the force network. The purely repulsive nature of the interaction between grains naturally provides an upper bound for the sustainable shear stress, which we analyze using an optimization procedure inspired by the so-called force network ensemble. We establish a relation between the maximum possible shear resistance and the friction coefficient between individual grains, and find that anisotropies of the contact network (or the fabric tensor) only have a subdominant effect. These results can be considered the hyperstatic limit of the force network ensemble and we discuss possible implications for real systems. Finally, we argue how force anisotropies can be related quantitatively to experimental measurements of the effective elastic constants.Comment: 17 pages, 6 figures. v2: slightly rearranged, introduction and discussion rewritte

    The general classical solution of the superparticle

    Full text link
    The theory of vectors and spinors in 9+1 dimensional spacetime is introduced in a completely octonionic formalism based on an octonionic representation of the Clifford algebra \Cl(9,1). The general solution of the classical equations of motion of the CBS superparticle is given to all orders of the Grassmann hierarchy. A spinor and a vector are combined into a 3Ă—33 \times 3 Grassmann, octonionic, Jordan matrix in order to construct a superspace variable to describe the superparticle. The combined Lorentz and supersymmetry transformations of the fermionic and bosonic variables are expressed in terms of Jordan products.Comment: 11 pages, REVTe

    Rough Surface Effect on Meissner Diamagnetism in Normal-layer of N-S Proximity-Contact System

    Full text link
    Rough surface effect on the Meissner diamagnetic current in the normal layer of proximity contact N-S bi-layer is investigated in the clean limit. The diamagnetic current and the screening length are calculated by use of quasi-classical Green's function. We show that the surface roughness has a sizable effect, even when a normal layer width is large compared with the coherence length Îľ=vF/Ď€Tc\xi =v_{\rm F}/\pi T_{\rm c}. The effect is as large as that of the impurity scattering and also as that of the finite reflection at the N-S interface.Comment: 12 pages, 3 figures. To be published in J. Phys. Soc. Jpn. Vol.71-

    Symmetries and observables in topological gravity

    Full text link
    After a brief review of topological gravity, we present a superspace approach to this theory. This formulation allows us to recover in a natural manner various known results and to gain some insight into the precise relationship between different approaches to topological gravity. Though the main focus of our work is on the vielbein formalism, we also discuss the metric approach and its relationship with the former formalism.Comment: 34 pages; a few explanations added in subsection 2.2.1, published version of pape

    Convergence of the Gaussian Expansion Method in Dimensionally Reduced Yang-Mills Integrals

    Full text link
    We advocate a method to improve systematically the self-consistent harmonic approximation (or the Gaussian approximation), which has been employed extensively in condensed matter physics and statistical mechanics. We demonstrate the {\em convergence} of the method in a model obtained from dimensional reduction of SU(NN) Yang-Mills theory in DD dimensions. Explicit calculations have been carried out up to the 7th order in the large-N limit, and we do observe a clear convergence to Monte Carlo results. For D≳10D \gtrsim 10 the convergence is already achieved at the 3rd order, which suggests that the method is particularly useful for studying the IIB matrix model, a conjectured nonperturbative definition of type IIB superstring theory.Comment: LaTeX, 4 pages, 5 figures; title slightly changed, explanations added (16 pages, 14 figures), final version published in JHE

    Memory of the Unjamming Transition during Cyclic Tiltings of a Granular Pile

    Get PDF
    Discrete numerical simulations are performed to study the evolution of the micro-structure and the response of a granular packing during successive loading-unloading cycles, consisting of quasi-static rotations in the gravity field between opposite inclination angles. We show that internal variables, e.g., stress and fabric of the pile, exhibit hysteresis during these cycles due to the exploration of different metastable configurations. Interestingly, the hysteretic behaviour of the pile strongly depends on the maximal inclination of the cycles, giving evidence of the irreversible modifications of the pile state occurring close to the unjamming transition. More specifically, we show that for cycles with maximal inclination larger than the repose angle, the weak contact network carries the memory of the unjamming transition. These results demonstrate the relevance of a two-phases description -strong and weak contact networks- for a granular system, as soon as it has approached the unjamming transition.Comment: 13 pages, 15 figures, soumis \`{a} Phys. Rev.

    Partons and Jets at the LHC

    Full text link
    I review some issues related to short distance QCD and its relation to the experimental program of the Large Hadron Collider (LHC) now under construction in Geneva.Comment: Talk at the conference QCD2002 at IIT Kanpur, India, November 2002. Ten pages with 12 figure
    • …
    corecore