15 research outputs found

    Polymorphisms in the selectin gene cluster are associated with fertility and survival time in a population of Holstein Friesian cows

    Get PDF
    Selectins are adhesion molecules, which mediate attachment between leucocytes and endothelium. They aid extravasation of leucocytes from blood into inflamed tissue during the mammary gland’s response to infection. Selectins are also involved in attachment of the conceptus to the endometrium and subsequent placental development. Poor fertility and udder health are major causes for culling dairy cows. The three identified bovine selectin genes SELP, SELL and SELE are located in a gene cluster. SELP is the most polymorphic of these genes. Several SNP in SELP and SELE are associated with human vascular disease, while SELP SNP rs6127 has been associated with recurrent pregnancy loss in women. This study describes the results of a gene association study for SNP in SELP (n = 5), SELL (n = 2) and SELE (n = 1) with fertility, milk production and longevity traits in a population of 337 Holstein Friesian dairy cows. Blood samples for PCR-RFLP were collected at 6 months of age and animals were monitored until either culling or 2,340 days from birth. Three SNP in SELPEx4-6 formed a haplotype block containing a Glu/Ala substitution at rs42312260. This region was associated with poor fertility and reduced survival times. SELPEx8 (rs378218397) coded for a Val475Met variant locus in the linking region between consensus repeats 4 and 5, which may influence glycosylation. The synonymous SNP rs110045112 in SELEEx14 deviated from Hardy Weinberg equilibrium. For both this SNP and rs378218397 there were too few AA homozygotes present in the population and AG heterozygotes had significantly worse fertility than GG homozygotes. Small changes in milk production associated with some SNP could not account for the reduced fertility and only SELPEx6 showed any association with somatic cell count. These results suggest that polymorphisms in SELP and SELE are associated with the likelihood of successful pregnancy, potentially through compromised implantation and placental development

    Human Endometrial CD98 Is Essential for Blastocyst Adhesion

    Get PDF
    BACKGROUND: Understanding the molecular basis of embryonic implantation is of great clinical and biological relevance. Little is currently known about the adhesion receptors that determine endometrial receptivity for embryonic implantation in humans. METHODS AND PRINCIPAL FINDINGS: Using two human endometrial cell lines characterized by low and high receptivity, we identified the membrane receptor CD98 as a novel molecule selectively and significantly associated with the receptive phenotype. In human endometrial samples, CD98 was the only molecule studied whose expression was restricted to the implantation window in human endometrial tissue. CD98 expression was restricted to the apical surface and included in tetraspanin-enriched microdomains of primary endometrial epithelial cells, as demonstrated by the biochemical association between CD98 and tetraspanin CD9. CD98 expression was induced in vitro by treatment of primary endometrial epithelial cells with human chorionic gonadotropin, 17-β-estradiol, LIF or EGF. Endometrial overexpression of CD98 or tetraspanin CD9 greatly enhanced mouse blastocyst adhesion, while their siRNA-mediated depletion reduced the blastocyst adhesion rate. CONCLUSIONS: These results indicate that CD98, a component of tetraspanin-enriched microdomains, appears to be an important determinant of human endometrial receptivity during the implantation window

    Mother and child's first bond found

    No full text

    Subcellular localization of L-selectin ligand in the endometrium implies a novel function for pinopodes in endometrial receptivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Apical surfaces of human endometrial epithelium and endothelium are key elements for the initiation of molecular interactions to capture the blastocyst or leukocyte, respectively. The L-selectin adhesion system has been strongly proposed to play an important role in the initial steps of trophoblast adhesion and promotion of integrin-dependent processes, ultimately culminating in the establishment of the embryo-maternal interface. On the basis of these facts, we hypothesized a novel role for pinopodes as the first embryo-fetal contact sites to contain the highest subcellular expression of L-selectin ligand suggesting its role in early adhesion as predicted. Thus, the objective of this study was therefore to determine the subcellular pattern of distribution of the L-selectin ligand (MECA-79) in human endometrial apical membrane region during the window of implantation.</p> <p>Methods</p> <p>Endometrial biopsies of secretory phases from fertile females ranging in age between 25 and 42years were studied using several approaches, including scanning electron microscopy (SEM), immunostaining for light microscopy and transmission electron microscopy (TEM), and immunoblotting as well as statistical analysis of the area-related numerical densities of immunoreactive MECA-79-bound nanogolds to detect the expression pattern and the subcellular distribution pattern of L-selectin ligand (MECA-79) in human endometrium during the window of implantation.</p> <p>Results</p> <p>The endometrial biopsies were scored according the dating criteria of Noyes et al. by an experienced histologist. The SEM images of the midluteal phase specimens revealed that fully developed pinopodes were abundant in our samples. HRP-immunostaining and immunofluorescent staining as well as immunoblotting revealed that MECA-79 was expressed in the midluteal phase specimens. The results of immunogold TEM illustrated the expression of MECA-79 in human pinopodes in the midluteal phase and a higher area-relate numerical density in pinopodes compared to that of the uterodome-free areas.</p> <p>Conclusions</p> <p>This is the first demonstration of the subcellular localization of MECA-79 in the human pinopodes which may indicate a novel role for pinopodes to be capable of shear-stress-dependent tethering-type adhesion in the initial phases of human embryo implantation.</p

    Sex Hormones Selectively Impact the Endocervical Mucosal Microenvironment: Implications for HIV Transmission

    No full text
    Several studies suggest that progesterone and estrogens may affect HIV transmission in different, possibly opposing ways. Nonetheless, a direct comparison of their effects on the mucosal immune system has never been done. We hypothesize that sex hormones might impact the availability of cells and immune factors important in early stages of mucosal transmission, and, in doing so influence the risk of HIV acquisition. To test this hypothesis, we employed 15 ovarectomized rhesus macaques: 5 were treated with Depot Medroxy Progesterone Acetate (DMPA), 6 with 17-β estradiol (E2) and 4 were left untreated. All animals were euthanized 5 weeks after the initiation of hormone treatment, a time post-DMPA injection associated with high susceptibility to SIV infection. We found that DMPA-treated macaques exhibited higher expression of integrin α4β7 (α4β7) on CD4+ T cells, the gut homing receptor and a marker of cells highly susceptible to HIV, in the endocervix than did the E2-treated animals. In contrast, the frequency of CCR5+ CD4+ T cells in DMPA-treated macaques was higher than in the E2-treated group in vaginal tissue, but lower in endocervix. α4β7 expression on dendritic cells (DCs) was higher in the DMPA-treated group in the endocervical tissue, but lower in vaginal tissue and on blood DCs compared with the E2-treated animals. Soluble MAdCAM-1, the α4β7 ligand, was present in the vaginal fluids of the control and E2-treated groups, but absent in the fluids from DMPA-treated animals. Both hormones modulated the expression and release of inflammatory factors and modified the distribution of sialomucins in the endocervix. In summary, we found that sex hormones profoundly impact mucosal immune factors that are directly implicated in HIV transmission. The effect is particularly significant in the endocervix. This may increase our understanding of the potential hormone-driven modulation of HIV susceptibility and potentially guide contraceptive policies in high-risk settings
    corecore