38 research outputs found
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Posttranslational mutagenesis: A chemical strategy for exploring protein side-chain diversity
Posttranslational modification of proteins expands their structural and functional capabilities beyond those directly specified by the genetic code. However, the vast diversity of chemically-plausible (including unnatural but functionally relevant) side-chains is not readily accessible. We describe C (sp3)–C (sp3) bond-forming reactions on proteins under biocompatible conditions, which exploit unusual carbon free radical chemistry, and use them to form Cβ–Cγ bonds with altered side chains. We demonstrate how these transformations enable a wide-diversity of natural, unnatural, posttranslationally-modified (methylated, glycosylated, phosphorylated, hydroxylated) and labeled (fluorinated, isotopically-labeled) side-chains to be added to a common, readily-accessible dehydroalanine precursor in a range of representative protein types and scaffolds. This approach, outside of the rigid constraints of the ribosome and enzymatic processing, may be modified more generally for accessing diverse proteins
Posttranslational mutagenesis: A chemical strategy for exploring protein side-chain diversity
Posttranslational modification of proteins expands their structural and functional capabilities beyond those directly specified by the genetic code. However, the vast diversity of chemically-plausible (including unnatural but functionally relevant) side-chains is not readily accessible. We describe C (sp3)–C (sp3) bond-forming reactions on proteins under biocompatible conditions, which exploit unusual carbon free radical chemistry, and use them to form Cβ–Cγ bonds with altered side chains. We demonstrate how these transformations enable a wide-diversity of natural, unnatural, posttranslationally-modified (methylated, glycosylated, phosphorylated, hydroxylated) and labeled (fluorinated, isotopically-labeled) side-chains to be added to a common, readily-accessible dehydroalanine precursor in a range of representative protein types and scaffolds. This approach, outside of the rigid constraints of the ribosome and enzymatic processing, may be modified more generally for accessing diverse proteins
Posttranslational mutagenesis: A chemical strategy for exploring protein side-chain diversity
Posttranslational modification of proteins expands their structural and functional capabilities beyond those directly specified by the genetic code. However, the vast diversity of chemically plausible (including unnatural but functionally relevant) side chains is not readily accessible. We describe C (sp3)-C (sp3) bond-forming reactions on proteins under biocompatible conditions, which exploit unusual carbon free-radical chemistry, and use them to form Cb-Cg bonds with altered side chains.We demonstrate how these transformations enable a wide diversity of natural, unnatural, posttranslationally modified (methylated, glycosylated, phosphorylated, hydroxylated), and labeled (fluorinated, isotopically labeled) side chains to be added to a common, readily accessible dehydroalanine precursor in a range of representative protein types and scaffolds. This approach, outside of the rigid constraints of the ribosome and enzymatic processing, may be modified more generally for access to diverse proteins
Posttranslational mutagenesis: A chemical strategy for exploring protein side-chain diversity
Copyright © 2016, American Association for the Advancement of Science. Posttranslational modification of proteins expands their structural and functional capabilities beyond those directly specified by the genetic code. However, the vast diversity of chemically plausible (including unnatural but functionally relevant) side chains is not readily accessible. We describe C (sp3)-C (sp3) bond-forming reactions on proteins under biocompatible conditions, which exploit unusual carbon free-radical chemistry, and use them to form Cβ-Cγ bonds with altered side chains. We demonstrate how these transformations enable a wide diversity of natural, unnatural, posttranslationally modified (methylated, glycosylated, phosphorylated, hydroxylated), and labeled (fluorinated, isotopically labeled) side chains to be added to a common, readily accessible dehydroalanine precursor in a range of representative protein types and scaffolds. This approach, outside of the rigid constraints of the ribosome and enzymatic processing, may be modified more generally for access to diverse proteins
Posttranslational mutagenesis: A chemical strategy for exploring protein side-chain diversity
Post-translational modification of proteins expands their structural and functional capabilities beyond those directly specified by the genetic code. However, the vast diversity of chemically-plausible (including unnatural but functionally relevant) side-chains is not readily accessible. We describe C(sp3)–C(sp3) bond-forming reactions on proteins under biocompatible conditions, which exploit unusual carbon free radical chemistry, and use them to form C–C bonds with altered side chains. We demonstrate how these transformations enable a wide-diversity of natural, unnatural, post-translationally-modified (methylated, glycosylated, phosphorylated, hydroxylated) and labeled (fluorinated, isotopically-labeled) side-chains to be added to a common, readily-accessible dehydroalanine precursor in a range of representative protein types and scaffolds. This approach, outside of the rigid constraints of the ribosome and enzymatic processing, may be modified more generally for accessing diverse proteins
The outsourcing productivity paradox: total outsourcing, organisational innovation, and long run productivity growth
Outsourcing, Organisational innovation, Long run productivity development, D23, D24, D83, O33,