2,173 research outputs found
Letter from A[lbert] J. Ochsner to [John Muir], 1909 Sep 7.
Dr. Albert [illegible]710 Sedgwick St.Chicago,September 7, 1909.My dear Alumnus:During the coming year the Alumni Association of the University of Wisconsin hopes to produce an Alumni Magazine which will do justice to the splendid University and the large number of Alumni it represents. In order to make this possible it will be necessary for as many as possible of the Alumni to give their support to this periodical.1st. By subscribing; which can be done simply by sending their dues of one dollar ($1.00) which entitles them to a copy of the Alumni Magazine for the coming school year and one year\u27s membership in the Association.2nd. By sending news items. Every Alumnus is interested in knowing what has happened to his classmates and the news items are always very interesting.3rd. By sending reminiscences. From 200 to 400 words will usually tell some reminiscence which will give cheer to a large number of contemporary students.4th. By sending short articles on subjects in which the writer is greatly interested and capable of writing in an interesting way. Such articles should contain from 200 to 600 words.5th. By suggesting to advertisers that the Alumni Magazine is a good medium to reach the people whom the advertiser wishes to imterest.6th. By getting all of your friends who are Alumni to do the same. If these various things are done, our Alumni Magazine will soon bring a sufficient income to the Alumni Magazine to defray all of the necessary expense in its maintenance and it will serve as a means of thoroughly binding together those that are most interested in the progress and honor of our Alma Mater.Very truly,A. J. Ochsner.P. S.--Remittance should be sent to the Wisconsin Alumni Magazine, Box 1127, Madison, Wisconsin.0457
The Impact of Dual-Career Marriage on Role Conflict and Marital Satisfaction
This study explores the influence of a dual-career marriage on role conflict and marital satisfaction. The investigator proposed eight research questions regarding role conflict and marital satisfaction, and their respective relationships with the number and age of children in the family; educational level; and economic status in dual-career marriages. Forty-one participants, currently in dual-career marriages with children, were asked to evaluate their family, married, and work life through a questionnaire survey. Two significant quantitative results were determined. First, an Independent Samples T-Test found that there are significant differences between the number of children (one versus more than one child) and role conflict in a dualcareer marriage. Second, a pearson bivariate correlation determined that there is a significant relationship between economic status and role conflict in a dual-career marriage. Multiple themes also emerged from the open-ended questions in the survey regarding family-work and work-family conflict, marital communication strategies and techniques, and marital satisfaction. The discussion and conclusion provide possible explanations, theoretical frameworks, limitations, and future research in response to these findings
Technology towards transcendence : apocalyptic spiritualities & the genesis of science fiction in Weimar Germany
This thesis seeks to understand how, in the early twentieth century, esoteric schools in German-speaking Europe influenced the proto-science fiction genre, especially the cinema of Weimar Germany. It is inspired by the work of historians such as Suzanne Marchand and Corinna Treitel, but expands their focus to the period after the First World War and into new forms of mass media. It investigates how discoveries in archaeology and philology reshaped the modern European understanding of the technological prestige of ancient Eastern civilizations, as well as the longstanding presumptions about the originality behind Western religious texts and traditions. In the decade leading up to the Great War, the shock of these discoveries inspired a countercultural revival of the occult and Gnosticism, which in turn found an unexpectedly strong expression among writers of pulp fiction and sensationalist literature, especially those of the science fiction and fantasy genres. In particular, this thesis focuses on the screenwriters, directors, and other filmmakers behind Weimar science fiction films. Its conclusions are tentative, pending on further research
Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors
The two-body dynamics in general relativity has been solved perturbatively
using the post-Newtonian (PN) approximation. The evolution of the orbital phase
and the emitted gravitational radiation are now known to a rather high order up
to O(v^8), v being the characteristic velocity of the binary. The orbital
evolution, however, cannot be specified uniquely due to the inherent freedom in
the choice of parameter used in the PN expansion as well as the method pursued
in solving the relevant differential equations. The goal of this paper is to
determine the (dis)agreement between different PN waveform families in the
context of initial and advanced gravitational-wave detectors. The waveforms
employed in our analysis are those that are currently used by Initial
LIGO/Virgo, that is the time-domain PN models TaylorT1, TaylorT2, TaylorT3,
TaylorT4 and TaylorEt, the effective one-body (EOB) model, and the
Fourier-domain representation TaylorF2. We examine the overlaps of these models
with one another and with the prototype effective one-body model (calibrated to
numerical relativity simulations, as currently used by initial LIGO) for a
number of different binaries at 2PN, 3PN and 3.5PN orders to quantify their
differences and to help us decide whether there exist preferred families that
are the most appropriate as search templates. We conclude that as long as the
total mass remains less than a certain upper limit M_crit, all template
families at 3.5PN order (except TaylorT3 and TaylorEt) are equally good for the
purpose of detection. The value of M_crit is found to be ~ 12M_Sun for Initial,
Enhanced and Advanced LIGO. From a purely computational point of view we
recommend that 3.5PN TaylorF2 be used below Mcrit and EOB calibrated to
numerical relativity simulations be used for total binary mass M > Mcrit.Comment: 27 pages, 8 figures, 4 tables, submitted to PR
Acute painful diabetic neuropathy: an uncommon, remittent type of acute distal small fibre neuropathy.
INTRODUCTION: Acute painful diabetic neuropathy (APDN) is a distinctive diabetic polyneuropathy and consists of two subtypes: treatment-induced neuropathy (TIN) and diabetic neuropathic cachexia (DNC). The characteristics of APDN are (1.) the small-fibre involvement, (2.) occurrence paradoxically after short-term achievement of good glycaemia control, (3.) intense pain sensation and (4.) eventual recovery. In the face of current recommendations to achieve quickly glycaemic targets, it appears necessary to recognise and understand this neuropathy.
METHODS AND RESULTS: Over 2009 to 2012, we reported four cases of APDN. Four patients (three males and one female) were identified and had a mean age at onset of TIN of 47.7 years (±6.99 years). Mean baseline HbA1c was 14.2% (±1.42) and 7.0% (±3.60) after treatment. Mean estimated time to correct HbA1c was 4.5 months (±3.82 months). Three patients presented with a mean time to symptom resolution of 12.7 months (±1.15 months). One patient had an initial normal electroneuromyogram (ENMG) despite the presence of neuropathic symptoms, and a second abnormal ENMG showing axonal and myelin neuropathy. One patient had a peroneal nerve biopsy showing loss of large myelinated fibres as well as unmyelinated fibres, and signs of microangiopathy.
CONCLUSIONS: According to the current recommendations of promptly achieving glycaemic targets, it appears necessary to recognise and understand this neuropathy. Based on our observations and data from the literature we propose an algorithmic approach for differential diagnosis and therapeutic management of APDN patients
Well-conditioned multi-product formulas for hardware-friendly Hamiltonian simulation
Simulating the time-evolution of a Hamiltonian is one of the most promising
applications of quantum computers. Multi-Product Formulas (MPFs) are well
suited to replace standard product formulas since they scale better with
respect to time and approximation errors. Hamiltonian simulation with MPFs was
first proposed in a fully quantum setting using a linear combination of
unitaries. Here, we analyze and demonstrate a hybrid quantum-classical approach
to MPFs that classically combines expectation values evaluated with a quantum
computer. This has the same approximation bounds as the fully quantum MPFs,
but, in contrast, requires no additional qubits, no controlled operations, and
is not probabilistic. We show how to design MPFs that do not amplify the
hardware and sampling errors, and demonstrate their performance. In particular,
we illustrate the potential of our work by theoretically analyzing the benefits
when applied to a classically intractable spin-boson model, and by computing
the dynamics of the transverse field Ising model using a classical simulator as
well as quantum hardware. We observe an error reduction of up to an order of
magnitude when compared to a product formula approach by suppressing hardware
noise with Pauli Twirling, pulse efficient transpilation, and a novel
zero-noise extrapolation based on scaled cross-resonance pulses. The MPF
methodology reduces the circuit depth and may therefore represent an important
step towards quantum advantage for Hamiltonian simulation on noisy hardware
An Improved Approach for Measurement of Coupled Heat and Water Transfer in Soil Cells
Laboratory experiments on coupled heat and water transfer in soil have been limited in their measurement approaches. Inadequate temperature control creates undesired two-dimensional distributions of both temperature and moisture. Destructive sampling to determine soil volumetric water content (θ) prevents measurement of transient θ distributions and provides no direct information on soil thermal properties. The objectives of this work were to: (i) develop an instrumented closed soil cell that provides one-dimensional conditions and permits in situ measurement of temperature, θ, and thermal conductivity (λ) under transient boundary conditions, and (ii) test this cell in a series of experiments using four soil type–initial θ combinations and 10 transient boundary conditions. Experiments were conducted using soil-insulated cells instrumented with thermo-time domain reflectometry (T-TDR) sensors. Temperature distributions measured in the experiments show nonlinearity, which is consistent with nonuniform thermal properties provided by thermal moisture distribution but differs from previous studies lacking one-dimensional temperature control. The T-TDR measurements of θ based on dielectric permittivity, volumetric heat capacity, and change in volumetric heat capacity agreed well with post-experiment sampling, providing r 2 values of 0.87, 0.93, and 0.95, respectively. Measurements of θ and λ were also consistent with the shapes of the observed temperature distributions. Techniques implemented in these experiments allowed observation of transient temperature, θ, and λ distributions on the same soil sample for 10 sequentially imposed boundary conditions, including periods of rapid redistribution. This work demonstrates that, through improved measurement techniques, the study of heat and water transfer processes can be expanded in ways previously unavailable
Gender Differences in Emotion Regulation: An fMRI Study of Cognitive Reappraisal
Despite strong popular conceptions of gender differences in emotionality and striking gender differences in the prevalence of disorders thought to involve emotion dysregulation, the literature on the neural bases of emotion regulation is nearly silent regarding gender differences (Gross, 2007; Ochsner & Gross, in press). The purpose of the present study was to address this gap in the literature. Using functional magnetic resonance imaging, we asked male and female participants to use a cognitive emotion regulation strategy (reappraisal) to down-regulate their emotional responses to negatively valenced pictures. Behaviorally, men and women evidenced comparable decreases in negative emotion experience. Neurally, however, gender differences emerged. Compared with women, men showed (a) lesser increases in prefrontal regions that are associated with reappraisal, (b) greater decreases in the amygdala, which is associated with emotional responding, and (c) lesser engagement of ventral striatal regions, which are associated with reward processing. We consider two non-competing explanations for these differences. First, men may expend less effort when using cognitive regulation, perhaps due to greater use of automatic emotion regulation. Second, women may use positive emotions in the service of reappraising negative emotions to a greater degree. We then consider the implications of gender differences in emotion regulation for understanding gender differences in emotional processing in general, and gender differences in affective disorders
Errors in Heat Flux Measurement by Flux Plates of Contrasting Design and Thermal Conductivity
The thermal conductivity (λ) of soils may vary by a factor of about 4 for a range of field soil water contents. Measurement of soil heat flux (G) using a heat flux plate with a fixed λ distorts heat flow through the plates and in the adjacent soil. The objectives of this research were to quantify heat flow distortion errors for soil heat flux plates of widely contrasting designs and to evaluate the accuracy of a previously reported correction. Six types of commercially available heat flux plates with varying thickness, face area, and thermal conductivity (λm) were evaluated. Steady-state laboratory experiments at flux densities from 20 to 175 W m−2 were completed in a large box filled with dry or saturated sand having λ of 0.36 and 2.25 W m−1K−1 A field experiment compared G measured with pairs of four plate types buried at 6 cm in a clay soil with G determined using the gradient technique. The flux plates underestimated G in the dry sand by 2.4 to 38.5% and by 13.1 to 73.2% in saturated sand while in moist clay plate performance ranged from a 6.2% overestimate to a 71.4% underestimate. Application of the correction generally improved agreement between plate estimates and independent Gmeasurements, especially when λ \u3e λm, although most plate estimates were still significantly lower than the actual G Limitations of the correction procedure indicate that renewed effort should be placed on innovative sensor designs that avoid or minimize heat flow distortion and/or provide direct, in situ calibration capability
Method for Maintaining One-Dimensional Temperature Gradients in Unsaturated, Closed Soil Cells
One-dimensional temperature gradients are difficult to achieve in nonisothermal laboratory studies because, in addition to desired axial temperature gradients, ambient temperature interference (ATI) creates a radial temperature distribution. Our objective was to develop a closed soil cell with limited ATI. The cell consists of a smaller soil column, the control volume, surrounded by a larger soil column, which provides radial insulation. End boundary temperatures are controlled by a new spiral-circulation heat exchanger. Four cell size configurations were tested for ATI under varying ambient temperatures. Results indicate that cells with a 9-cm inner column diameter, 5-cm concentric soil buffer, and either 10- or 20-cm length effectively achieved one-dimensional temperature conditions. At 30°C ambient temperature, and with axial temperature gradients as large as 1°C cm−1, average steady-state radial temperature gradients in the inner soil columns were−1 Thus, these cell configurations meet the goal of maintaining a one-dimensional temperature distribution. These cells provide new opportunities for improving the study of coupled heat and water movement in soil
- …