15 research outputs found

    Placenta Percreta Presents with Neoangiogenesis of Arteries with Von Willebrand Factor-Negative Endothelium

    Get PDF
    In placenta percreta cases, large vessels are present on the precrete surface area. As these vessels are not found in normal placentation, we examined their histological structure for features that might explain the pathogenesis of neoangiogenesis induced by placenta accreta spectrum disorders (PAS). In two patients with placenta percreta (FIGO grade 3a) of the anterior uterine wall, one strikingly large vessel of 2 cm length was excised. The samples were formalin fixed and paraffin-embedded. Gomori trichrome staining was used to evaluate the muscular layers and Weigert-Van Gieson staining for elastic fibers. Immunohistochemical staining of the vessel endothelium was performed for Von Willebrand factor (VWF), platelet endothelial cell adhesion molecule (CD31), Ephrin B2, and EPH receptor B4. The structure of the vessel walls appeared artery-like. The vessel of patient one further exhibited an unorderly muscular layer and a lack of elastic laminae, whereas these features appeared normal in the vessel of the other patient. The endothelium of both vessels stained VWF-negative and CD31-positive. In conclusion, this study showed VWF-negative vessel endothelia of epiplacental arteries in placenta accreta spectrum. VWF is known to regulate artery formation, as the absence of VWF has been shown to cause enhanced vascularization. Therefore, we suppose that PAS provokes increased vascularization through suppression of VWF. This process might be associated with the immature vessel architecture as found in one of the vessels and Ephrin B2 and EPH receptor B4 negativity of both artery-like vessels. The underlying pathomechanism needs to be evaluated in a greater set of patients

    Nucleolin Inhibits G4 Oligonucleotide Unwinding by Werner Helicase

    Get PDF
    The Werner protein (WRNp), a member of the RecQ helicase family, is strongly associated with the nucleolus, as is nucleolin (NCL), an important nucleolar constituent protein. Both WRNp and NCL respond to the effects of DNA damaging agents. Therefore, we have investigated if these nuclear proteins interact and if this interaction has a possible functional significance in DNA damage repair.Here we report that WRNp interacts with the RNA-binding protein, NCL, based on immunoprecipitation, immunofluorescent co-localization in live and fixed cells, and direct binding of purified WRNp to nucleolin. We also map the binding region to the C-terminal domains of both proteins. Furthermore, treatment of U2OS cells with 15 µM of the Topoisomerase I inhibitor, camptothecin, causes the dissociation of the nucleolin-Werner complex in the nucleolus, followed by partial re-association in the nucleoplasm. Other DNA damaging agents, such as hydroxyurea, Mitomycin C, and aphidicolin do not have these effects. Nucleolin or its C-terminal fragment affected the helicase, but not the exonuclease activity of WRNp, by inhibiting WRN unwinding of G4 tetraplex DNA structures, as seen in activity assays and electrophoretic mobility shift assays (EMSA).These data suggest that nucleolin may regulate G4 DNA unwinding by WRNp, possibly in response to certain DNA damaging agents. We postulate that the NCL-WRNp complex may contain an inactive form of WRNp, which is released from the nucleolus upon DNA damage. Then, when required, WRNp is released from inhibition and can participate in the DNA repair processes

    In Situ

    No full text

    Novel Simian Homologues of Epstein-Barr Virus

    No full text
    Thirty different lymphocryptoviruses (LCV), 26 of them novel, were detected in primates by a panherpesvirus PCR assay. Nineteen LCV from chimpanzees, bonobos, gorillas, and other Old World primates were closely related to Epstein-Barr virus (EBV), the type species of the genus Lymphocryptovirus. Seven LCV originating from New World primates were related to callitrichine herpesvirus 3 (CalHV-3), the first recognized New World LCV. Importantly, a second LCV from gorillas and three LCV from orangutans and gibbons were only distantly related to EBV and CalHV-3. They were tentatively assigned to a novel genogroup of Old World primate LCV. The work described in the paper may also help identify an as yet unknown human LCV

    Impaired Binding of Standard Initiation Factors Mediates Poliovirus Translation Attenuation

    No full text
    In the oral poliovirus vaccine, three attenuated virus strains generated by Albert Sabin are used. However, insufficient genetic stability of these strains causes major problems in poliovirus eradication. In infected cells, translation of the plus-strand poliovirus RNA genome is directed by the internal ribosome entry site (IRES), a cis-acting RNA element that facilitates the cap-independent binding of ribosomes to an internal site of the viral RNA. In each Sabin vaccine strain, a single point mutation in the IRES secondary-structure domain V is a major determinant of neurovirulence attenuation. Here we report how these decisive mutations in the IRES confer a reduction in poliovirus translation efficiency. These single-nucleotide exchanges impair the interaction of the standard translation initiation factor eIF4G with the IRES domain V. Moreover, binding of eIF4B and the polypyrimidine tract-binding protein and the association of ribosomes with the viral RNA are affected by these mutations. However, the negative effects of the IRES mutations are completely relieved by addition of purified eIF4F. This indicates that eIF4G is the crucial factor that initially binds to the poliovirus IRES and recruits the IRES to the other components of the translational apparatus, while impaired binding of eIF4G plays a key role in attenuation of poliovirus neurovirulence

    Evidence for an RNA chaperone function of polypyrimidine tract-binding protein in picornavirus translation

    No full text
    The cellular polypyrimidine tract-binding protein (PTB) is recruited by the genomic RNAs of picornaviruses to stimulate translation initiation at their internal ribosome entry site (IRES) elements. We investigated the contribution of the individual RNA recognition motif (RRM) domains of PTB to its interaction with the IRES of foot-and-mouth disease virus (FMDV). Using a native gel system, we found that PTB is a monomer, confirming recent reports that challenged the previous view that PTB is a dimer. Mapping the spatial orientation of PTB relative to the bound IRES RNA, we found that the two C-terminal RRM domains III and IV of PTB bind in an oriented way to the IRES. Domain III contacts the IRES stem-loop 2, while domain IV contacts the separate IRES 3′ region. PTB domain I appears not to be involved directly in RNA binding, but domain II stabilizes the RNA binding conferred by domains III and IV. A PTB protein containing only these two C-terminal PTB domains is sufficient to enhance the entry of initiation factor eIF4G to the IRES and stimulate IRES activity, and the long-lived PTB–IRES interaction stabilized by domain II is not a prerequisite for this function. Thus, PTB most likely acts as an RNA chaperone to stabilize IRES structure and, in that way, augment IRES activity
    corecore