146 research outputs found

    Methane overtone absorption by intracavity laser spectroscopy

    Get PDF
    Interpretation of planetary methane (CH4) visible-near IR spectra, used to develop models of planetary atmospheres, has been hampered by a lack of suitable laboratory spectroscopic data. The particular CH4 spectral bands are due to intrinsically weak, high overtone-combination transitions too complex for classical spectroscopic analysis. The traditional multipass cell approach to measuring spectra of weakly absorbing species is insufficiently sensitive to yield reliable results for some of the weakest CH4 absorption features and is difficult to apply at the temperatures of the planetary environments. A time modulated form of intracavity laser spectroscopy (ILS), has been shown to provide effective absorption pathlengths of 100 to 200 km with sample cells less than 1 m long. The optical physics governing this technique and the experimental parameters important for obtaining reliable, quantitative results are now well understood. Quantitative data for CH4 absorption obtained by ILS have been reported recently. Illustrative ILS data for CH4 absorption in the 619.7 nm and 681.9 nm bands are presented. New ILS facilities at UM-St. Louis will be used to measure CH4 absorption in the 700 to 1000 nm region under conditions appropriate to the planetary atmospheres

    Experimental Study of Bypass Transition in a Boundary Layer

    Get PDF
    A detailed investigation to compare the boundary layer transition process in a low intensity disturbance environment to that in an environment in which the disturbances are initially non-linear in amplitude was conducted using a flat plate model. The transition mechanism based on linear growth of Tollmien Schlichting (T-S) waves was associated with a freestream turbulence level of 0.3 percent; however, for a freestream turbulence intensity of 0.65 percent and higher, the bypass transition mechanism prevailed. The results of detailed measurements acquired to study and compare the two transition mechanisms indicate that there exists a critical value for the peak rms of the velocity fluctuations within the boundary layer of approximately 3 to 3.5 percent of the freestream velocity. Once the unsteadiness within the boundary layer reached this critical value, turbulent bursting initiated, regardless of the transition mechanism. The two point correlations and simultaneous time traces within the transition region illustrate the features of a turbulent burst and its effect on the surrounding flowfield

    Planet X probe: A fresh new look at an old familiar place

    Get PDF
    Planet X Probe utilizes a Get Away Special (GAS) payload to provide a large student population with a remote Earth sensing experimental package. To provide a cooperative as well as a competitive environment, the effort is targeted at all grade levels and at schools in different geographical regions. LANDSAT capability allows students to investigate the Earth, its physical makeup, its resources, and the impact of man. This project also serves as an educational device to get students to stand back and take a fresh look at their home planet. The key element is to treat the familiar Earth as an unknown planet with knowledge based only on what is observable and provable from the images obtained. Through participation, a whole range of experiences will include: (1) mission planning; (2) research and pilot projects to train teams; (3) identification and recruitment of scientific mentors and dialogue; (4) selection of a student advisory team to be available during the mission; (5) analysis of data and compilation of findings; (6) report preparation, constucted along sound scientific principles; and (7) presentation and defense of findings before a meeting of competitive student groups and scientist in the field

    System design of an activity tracker to encourage behavioral change among those at risk of pressure ulcers

    Get PDF
    The Wheelchair In-Seat Activity Tracker (WiSAT) is a sensor-based activity tracker aimed at encouraging in-seat movement among wheelchair users who are at risk of pressure ulcers. Pressure ulcers tend to form in the buttocks or thighs of a wheelchair user due to a lack of pressure redistribution in that part of the body. Pressure ulcers are a serious risk to many wheelchair users due to a plethora of harmful side-effects, such as infection, hospitalization, and long recovery times. However, in-seat movements, such as weight shifts, have been linked with the occurrence of pressure ulcers. WiSAT began as a research tool that enabled researchers to monitor the in-seat activity of wheelchair users during their daily lives through sensor-based reporting, as opposed to relying solely on the self-reporting of research participants. Through the efforts described in this thesis, WiSAT was transformed from a research tool into a consumer product. Specifically, this thesis describes the design, development, and integration of WiSAT’s subsystem through four specific aims: 1. Design and evaluation of a user-interface based upon principles of Health Behavioral Change Theory. 2. Coupling of the Hardware and Smartphone App Subsystems 3. Preparation of the Algorithm Subsystem 4. Integration of the WiSAT Subsystems through Multi-layered Architecture for the WiSAT Smartphone AppM.S

    Alien Registration- Obrien, James S. (Auburn, Androscoggin County)

    Get PDF
    https://digitalmaine.com/alien_docs/30167/thumbnail.jp

    Source Location of Forced Oscillations Using Synchrophasor and SCADA Data

    Get PDF
    Recent advances in synchrophasor based oscillation monitoring algorithms have allowed engineers to detect oscillation issues that may have previously gone undetected. Although such an oscillation can be flagged and its oscillation shape can indicate the general vicinity of its source, low number of synchrophasors means that a specific generator or load that is the root cause of an oscillation cannot easily be pinpointed. Fortunately, SCADA serves as a much more readily available telemetered source of data if only at a relatively low sampling rate of 1 sample every 1 to 10 seconds. This paper shows that it is possible to combine synchrophasor and SCADA data for effective source location of forced oscillations. For multiple recent oscillation events, the proposed automatic methods were successful in correct identification of the oscillation source which was confirmed in each case by discussion with respective generation plant owners

    Photographing the Earth G324: The Can Do GeoCam payload

    Get PDF
    The flight of the Charleston County School District Can Do Project GeoCam payload on STS-57 was the climax of a decade long endeavor to bring the promise and excitement of the space program directly into the classroom. The payload carried four cameras designed to take high resolution photographs of the Earth under the direction of children operating the first ever student control room. During the course of the flight, the students followed the Shuttle's orbital tract, satellite weather images and selected a target list that was sent up to the crew each night as part of the execute package. Targets from this list, as well as ones chosen by the crew visually, resulted in the successful collection of photographic runs at many interesting sites on three on three continents

    Application of Experimental Design to Hydrogen Storage: Optimisation of Lignin-Derived Carbons

    Get PDF
    Lignin is a significant by-product of the paper pulping and biofuel industries. Upgrading lignin to a high-value product is essential for the economic viability of biorefineries for bioethanol production and environmentally benign pulping processes. In this work, the feasibility of lignin-derived activated carbons for hydrogen storage was studied using a Design of Experiments methodology, for a time and cost-efficient exploration of the synthesis process. Four factors (carbonisation temperature, activation temperature, carbonisation time, and activation time) were investigated simultaneously. Development of a mathematical model allowed the factors with the greatest impact to be identified using regression analysis for three responses: surface area, average pore size, and hydrogen uptake at 77 K and 1 bar. Maximising the surface area required activation conditions using the highest settings, however, a low carbonisation temperature was also revealed to be integral to prevent detrimental and excessive pore widening. A small pore size, vital for efficient hydrogen uptake, could be achieved by using low carbonisation temperature but also low activation temperatures. An optimum was achieved using the lowest carbonisation conditions (350 °C for 30 min) to retain a smaller pore size, followed by activation under the severest conditions (1000 °C for 60 min) to maximise surface area and hydrogen uptake. These conditions yielded a material with a high surface area of 1400 m2 g−1 and hydrogen uptake of 1.9 wt.% at 77 K and 1 bar
    corecore