
SYSTEM DESIGN OF AN ACTIVITY TRACKER TO ENCOURAGE BEHAVIORAL CHANGE
AMONG THOSE AT RISK OF PRESSURE ULCERS

A Thesis
Presented to

 The Academic Faculty

By

John J OBrien

In Partial Fulfillment
Of the Requirements for the Degree
Master of Science in Bioengineering

Georgia Institute of Technology

May, 2019

Copyright © John J OBrien 2019

SYSTEM DESIGN OF AN ACTIVITY TRACKER TO ENCOURAGE BEHAVIORAL CHANGE
AMONG THOSE AT RISK OF PRESSURE ULCERS

Approved By:

Dr. Stephen Sprigle, Advisor
School of Industrial Design
Georgia Institute of Technology

Dr. Sharon Sonenblum
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Thomas Ploetz
College of Computing
Georgia Institute of Technology

Date Approved: April 22, 2019

DEDICATION

Dedicated to my fiancée, Katelyn Sophia Ann Sturdivant

iv

ACKNOWLEDGEMENTS

 I would like to thank my advisor, Dr. Stephen Sprigle, for his guidance during the time

that I spent working on my thesis in the Rehabilitation Engineering and Applied Research (REAR)

lab. Under his guidance, I learned a great deal about design, engineering, and project

management. Without him, I would not have been able to complete this thesis.

 Second, I would like to thank Dr. Sharon Sonenblum for her ongoing work on WiSAT and

the help she provided me along the way. She shared her immense knowledge of subjects related

to WiSAT, especially those related to the hardware and algorithm subsystems. She was essential

to my ability to complete Specific Aim 3.

 I would also like to thank Dr. Thomas Ploetz for his time serving on my thesis

committee, proofreading drafts of my thesis, and for the lessons he taught as part of his Mobile

and Ubiquitous Computing course.

 I owe a tremendous amount of thanks to my fellow students and colleagues in the REAR

lab for their help with WiSAT and for keeping morale up during my time in the lab. In particular, I

would like to thank members (past and present) of the WiSAT team: Chris Hanes, Katie Jordan,

Yogesh Deshpande, and Ashley Andrews. Additionally, I owe a special thanks to Michael Aki for

his work translating algorithms into Java and Swift, as well as Ji-Won Jung for her work as a

tester, and Nauman Ahad for his tireless algorithm work and staying late to assist me with the

work covered in Specific Aim 3. I would like to thank XiuXiu Yuan for her patience in teaching me

Adobe XD and for her vital contribution to the design of the app. I would like to thank the

students who assisted with the “real-time” app: Victor Zhu, Aditya Retnanto, Aelita Shen, and

v

Jordan Ray. I thank Christina Anderson for her assistance with the line drawings in the app. Also,

I owe a special thanks to Jacob Misch for his general helpfulness around the lab.

 Additionally, I would like to thank Quincy Williams of DataFinch Technologies and Enrich

Trait for the advice and lessons he shared based on his years of experience as a software

engineer.

 Our industry and academic partners were especially valuable to the completion of this

project. In particular: Mike Crowe and Alex Kooney of Gulf Coast Data Concepts, Ashok Amaran

of App Chefs, Ankith Patel of Apeiro Technology, Yair Bar-On of TestFairy, and Dr. Bambang

Parmanto and Dr. Andi Saptono of the HARI Lab at the University of Pittsburgh.

 Many others helped in a variety of ways throughout the duration of this project: Agrim

Chandra, Becky Yao, Chris Bartlett, Drew Keller, Jayanth Mohana Krishna (API Advice), Jun Kim,

Laura Paige, Noah Posner, Shane Owens, Skyler Canute, and the staff of the REAR Lab.

 Finally, I would like to thank my family, especially my parents, Ginny and John OBrien,

for being supportive of me while I pursued my graduate degree. I would like to thank my Aunt

Mar for letting me live with her for several months while I was at Georgia Tech. Last, I would like

to thank my fiancée, Katelyn, for her support through a long-distance relationship while I was in

school.

This work was supported by the Office of the Assistant Secretary of Defense for Health

Affairs, through the Spinal Cord Injury Research Program under Award No. W81XWH-17-1-0221

and the National Institute of Aging of the National Institutes of Health under Award Number

1R01AG056255. Opinions, interpretations, conclusions and recommendations are those of the

author and are not necessarily endorsed by the Department of Defense or National Institutes of

Health.

vi

TABLE OF CONTENTS

Acknowledgements iv

List of Tables viii

List of Figures ix

List of Abbreviations xi

Summary xii

Chapter 1. Introduction 1

Chapter 2. Background 5

 2.1 Health Behavioral Change Theory 6

 2.2 Health Behavioral Change Theory Frameworks 6

 2.3 Just-In-Time Adaptive Intervention 8

 2.4 Usability and Health Numeracy 8

 2.5 Technical Design Philosophy 10

Chapter 3. Development and Design Process 11

 3.1 Specific Aim 1: Design and evaluate WiSAT’s user-interface 11

 3.2 Specific Aim 2: Coupling of the Hardware and Smartphone App Subsystems 20

 3.3 Specific Aim 3: Preparation of Algorithm Subsystem 27

 3.4 Specific Aim 4: Integration of the WiSAT Subsystems through Multi-layered

 Architecture for the WiSAT Smartphone App 29

Chapter 4. Implementation, Deliverables, and Results 33

 4.1 Specific Aim 1: Design and evaluation of a user-interface 33

 4.2 Specific Aim 2: Coupling of the Hardware and Smartphone App Subsystems 41

 4.3 Specific Aim 3: Preparation of Algorithm Subsystem 49

 4.4 Specific Aim 4: Integration of the WiSAT Subsystems through Multi-layered

 Architecture for the WiSAT Smartphone App 59

Chapter 5. Conclusion and Future Work 67

 5.1 Hardware Subsytem 68

vii

 5.2 App Subsystem 71

 5.3 Algorithm Subsystem 73

 5.4 Remote Subsystem 74

Appendix A: WiSAT Initialization Screens 76

Appendix B: Alternate WiSAT Designs 79

Appendix C: UI Evaluation 81

Appendix D: SUMI Questionnaire – Modified for WiSAT 84

Appendix E: Quality Assurance 86

Appendix F: Initial System Requirements 90

Appendix G: Test Cases 92

Appendix H: UI Evaluation Results 104

Appendix I: WiSAT’s JITAI Framework 112

Appendix J: Weight Shift Classifier Pipeline 114

References 115

viii

LIST OF TABLES

Table 1: Lyons' Behavioral Change Techniques associated with Successful Interventions 7

Table 2: Scope of Specific Aim 1 11

Table 3: Apps Reviewed 16

Table 4: Scope of Specific Aim 2 20

Table 5: Scope of Specific Aim 3 27

Table 6: Scope of Specific Aim 4 29

Table 7: Efficiency and Effectiveness Results of UI Evaluation – Alternate Designs 33

Table 8: Efficiency and Effectiveness of UI Evaluation - Information and Settings Screens 34

Table 9: Side-By-Side Evaluation of Detail Screens 34

Table 10: Open-Ended Responses to Day and Week Side-By-Side Comparisons 35

Table 11: Summary of SUMI Results 38

Table 12: Algorithm Features 49

Table 13: WiSAT Hardware Technical Specifications 69

ix

LIST OF FIGURES

Figure 1: WiSAT Subsystems 3

Figure 2: Goal Setting Screen 12

Figure 3: WiSAT Home Screen Sections 13

Figure 4: Month and Week Screens 14

Figure 5: Prototype WiSAT Screens from Cheng, 2015 15

Figure 6: Examples of Apps Reviewed: Jawbone Up, Sweatcoin, Fitbit 16

Figure 7: Home Screens of Design A (left) and Design B (right) 17

Figure 8: BCT Implementation in WiSAT 17

Figure 9: WiSAT Data Acquisition (Version 1 and 2) 22

Figure 10: Example Battery Plot 25

Figure 11: Version 2 WiSAT Sensor Mat 26

Figure 12: Version 2 Data Logger 26

Figure 13: Version 2 Data Logger with Case Removed 27

Figure 14: WiSAT System Requirements and Data Flow 31

Figure 15: WiSAT Design Alternatives ` 37

Figure 16: Example of JITAI in WiSAT 41

Figure 17: Data Logger's Root Directory as Viewed by a Windows PC 42

Figure 18: Version 1 CSV Data (As Viewed in Notepad++) 44

Figure 19: Version 2 JSON Data (Viewed in Notepad++) 45

Figure 20: Batch Mode Operation 47

Figure 21: Battery Configuration 49

Figure 22: Initialization Algorithm Data Flow 53

Figure 23: Batch Mode Algorithm Data Flow 53

Figure 24: Classification Algorithm Workflow 55

Figure 25: Builder Pattern Used to Create WiSAT Algorithms 56

x

Figure 26: Builder Pattern Visualization 58

Figure 27: Singleton to Database Visualization 58

Figure 28: WiSAT App Architecture 59

Figure 29: WiSAT Subsystems – Detailed 60

Figure 30: Raw Data Table from Database Schema 62

Figure 31: Foreign Key Relationships of RepoRawData 63

Figure 32: Example TestFairy Session 66

xi

LIST OF ABBREVIATIONS

API: Application Program Interface

App: Smartphone Application

BCT: Behavioral Change Technique

BCTTv1: Behavioral Change Technique Taxonomy

HBCT: Health Behavioral Change Theory

ISO: International Organization for Standardization

JITAI: Just-In-Time Adaptive Intervention

mAh: milliamp hour

NIST: National Institute of Standards and Technology

SQL: A programming language used to retrieve, create, update, and delete information in a

database

UI: User-Interface

WISAT: Wheelchair In-Seat Activity Tracker

xii

SUMMARY

 The Wheelchair In-Seat Activity Tracker (WiSAT) is a sensor-based activity tracker aimed

at encouraging in-seat movement among wheelchair users who are at risk of pressure ulcers.

Pressure ulcers tend to form in the buttocks or thighs of a wheelchair user due to a lack of

pressure redistribution in that part of the body. Pressure ulcers are a serious risk to many

wheelchair users due to a plethora of harmful side-effects, such as infection, hospitalization, and

long recovery times. However, in-seat movements, such as weight shifts, have been linked with

the occurrence of pressure ulcers.

WiSAT began as a research tool that enabled researchers to monitor the in-seat activity

of wheelchair users during their daily lives through sensor-based reporting, as opposed to

relying solely on the self-reporting of research participants. Through the efforts described in this

thesis, WiSAT was transformed from a research tool into a consumer product. Specifically, this

thesis describes the design, development, and integration of WiSAT’s subsystem through four

specific aims:

1. Design and evaluation of a user-interface based upon principles of Health Behavioral

Change Theory.

2. Coupling of the Hardware and Smartphone App Subsystems

3. Preparation of the Algorithm Subsystem

4. Integration of the WiSAT Subsystems through Multi-layered Architecture for the

WiSAT Smartphone App

1

CHAPTER 1. INTRODUCTION

 Pressure ulcers pose a serious threat to the well-being of wheelchair users. The National

Pressure Ulcer Advisory Panel defines pressure ulcers as “localized injury to the skin and/or

underlying tissue usually over a bony prominence, as a result of pressure, or pressure in

combination with shear”[1]. Because of their reduced mobility and, in many cases, impaired

sensation, many wheelchair users remain susceptible to pressure ulcers throughout their lives.

Although pressure ulcers range in severity, more serious pressure ulcers can take 6-18 months to

heal [2], may be accompanied by infection, and may require the surgical removal of damaged

tissue [1, 3]. Even in cases where surgery is not required, pressure ulcers may be treated with

several weeks to months of bed rest, which often places a large financial and psychological

burden on the individual due to treatment costs and lost productivity [4, 5]. One study found

that within the first year of experiencing a spinal cord injury, 41% of individuals experienced a

pressure ulcer [6]. Additionally, once a person develops their first pressure ulcer, they are at an

increased risk of additional ulcers forming in the future[7].

 Research indicates in-seat maneuvers known as pressure reliefs and weight shifts are

effective in relieving pressure and increasing blood flow in the buttocks [8, 9]. Pressure reliefs

are typically longer movements aimed at completely removing pressure from the ischial

tuberosities. Weight shifts are any in-seat movement, including functional movements, which

redistributes weight across the buttocks for several seconds or more. Since both pressure relief

and blood flow are associated with pressure ulcer prevention [10], wheelchair users who are

able to perform these maneuvers independently are encouraged to do so several times per hour

[1, 10]. Unfortunately, evidence suggests that many wheelchair users fail to perform pressure

2

reliefs and weight shifts consistently enough to lower their risk of developing a pressure ulcer

[11].

Researchers and clinicians suggest that feedback on pressure ulcer prevention efforts

encourages individuals to engage in behaviors that reduce their risk of pressure ulcers [12-16].

Previous studies, which relied upon self-reporting, indicated no link between pressure reliefs or

weight shifts and pressure ulcers [17-19]. However, recent studies used sensor-based technology

to monitor pressure relief and weight shift activity during study participants’ daily lives. These

studies indicated that (1) individuals with prior pressure ulcers perform fewer weight shifts than

those with no prior history, (2) in general, none of the study participants performed an adequate

number of pressure reliefs or weight shifts, and (3) that there is a link between weight shifts and

the occurrence of pressure ulcers [9, 20]. The Wheelchair in-Seat Activity Tracker (WiSAT) was

developed as an activity tracker system that builds upon the technology and findings of these

previous studies to monitor and inform users about their in-seat activity.

 The WiSAT system consists of four subsystems (Figure 1). First, a hardware subsystem

contains a sensor mat and data logger. The sensor mat contains six force sensors and is

positioned on the underside of the wheelchair user’s cushion. The data logger module collects

data from the pressure mat at 4 Hertz. Second, a companion smartphone application (app)

receives the sensor data from the data logger via Bluetooth Low Energy technology. Third,

classification algorithms in the app interpret the sensor data to determine when various in-seat

activities occur, including weight shifts, and times when the user is out of their chair. The WiSAT

app displays this information to the user in the context of user-defined goals. Goals are set for

three variables: number of weight shifts, time between weight shifts, and an In-Seat Movement

score. The in-seat movement score is a metric intended to measure “fidgeting”, movements that

are shorter in duration than weight shifts but still redistribute pressure off the buttocks and

3

thighs. The last subsystem, a remote server, collects and archives aggregated WiSAT data

through a series of RESTful API endpoints.

Figure 1: WiSAT Subsystems

Early iterations of WiSAT were designed for research purposes and were not yet ready

for consumer use. The objective of this thesis was to create the next iteration of WiSAT, a

consumer product built upon the technology and lessons learned from prior research. As a

consumer product, WiSAT was designed to be used directly by the end-user, without any

necessary intervention or guidance from healthcare experts. This objective was accomplished

through four specific aims:

4

 Specific Aim 1: Design and evaluation a user-interface based upon principles of Health

Behavioral Change Theory.

 Specific Aim 2: Coupling of the Hardware and Smartphone App Subsystems

 Specific Aim 3: Preparation of Algorithm Subsystem

 Specific Aim 4: Integration of the WiSAT Subsystems through Multi-layered

Architecture for the WiSAT Smartphone App

5

CHAPTER 2. BACKGROUND

Decades before the introduction of mobile computing, Carr and Wilson [21] examined

the effectiveness of electronic monitoring and notification systems upon wheelchair users’

pressure ulcer prevention efforts. They suggested that wheelchair users often fail to comply with

their prevention regimens because of the lack of feedback accompanying a single relief. They

found that the use of their electronic notification system is associated with increased compliance

and hypothesized that this is due to the frequent feedback that is provided to the user based on

their compliance (or lack thereof) with their regimen.

With the proliferation of mobile computing, new technologies have arisen to encourage

health and wellness by monitoring and communicating user behavior. For example, multiple

systems utilize a mobile, sensor-based approach to monitor and promote physical fitness [22-

26]. Likewise, many mobile applications exist to help patients manage chronic illnesses, such as

diabetes [27, 28], cardiovascular[28], and respiratory disease [28]. Other applications seek to

build compliance among patients with regards to a medication regimen [28-30]. As with Carr and

Wilson’s research, many of these systems utilize sensor data to provide regular feedback to the

user and encourage specific behaviors.

 In the domain of pressure ulcer prevention, past work highlights the use of sensor data

to determine information regarding in-seat activity. With the help of machine learning

algorithms, it is possible to determine long-term, in-seat activity with a pressure sensing mat

placed under wheelchair cushions [31]. This thesis builds upon previous hardware developed to

monitor in-seat activity in a research setting [9, 11] and combines it with a smartphone app.

 At least one similar system has attempted to monitor in-seat-activity with pressure

sensors and provide feedback to the user through a mobile application [32]. However, WiSAT

6

differs from previous work in that it is built with a strong focus on Health Behavioral Change

Theory (HBCT) as a means to encourage users to comply with their prevention regimens.

2.1 Health Behavioral Change Theory

In the context of this thesis, HBCT is an “umbrella term” which encompasses several

theories that attempt to explain the psychological mechanisms responsible for promoting health

and wellness through the reduction of harmful behaviors and the encouragement of beneficial

ones. Although it has many applications, behavioral change is especially important to the

management of chronic health conditions [33]. Social Cognitive Theory, the Health Belief Model,

and the Transtheoretical Model of Change are among the leading theories in this field [34, 35].

Concepts from all three theories can be applied to pressure ulcer prevention. As noted

by Prochaska and Velicer, “No single theory can account for all of the complexities of behavior

change” [36]. Researchers summarize the commonalities between the three theories as: (1) goal

setting, (2) social support, (3) rewarding beneficial behaviors, (4) maintenance, and (5)

prevention of relapse [35]. Behavioral interventions based on these theories often involve many

components including those related to the patient’s social, environmental, and community

surroundings [37].

2.2 Health Behavioral Change Theory Frameworks

WiSAT was designed and evaluated based on principles that derive from the theories

described above. While there is not yet a universal standard to evaluate mobile HBCT systems,

there are some proposed frameworks in the literature. As seen in work by Wang, Fadhil, Lange,

and Reiterer (2017), the best approach to design and evaluate an HBCT may be a combination of

several frameworks [38].

7

Many of the UI features of the WiSAT app derive from Behavioral Change Techniques

(BCTs), which are individual components of a behavior intervention [39]. At least three related

taxonomies exist to classify BCTs in mobile activity trackers [40, 41]. The most recent of these

taxonomies is known as Behavioral Change Technique Taxonomy v1 (BCTTv1) [39]. It is composed

of 93 BCTs divided into 16 categories. A study by Lyons, Lewis, Mayrsohn, and Rowland (2014)

examined the prevalence of these BCTs in “electronic activity monitors” (mobile applications

that track the user’s physical activity) [42]. As acknowledged by the authors, not all BCTs in this

taxonomy are relevant for all scenarios. Some BCTs may be more relevant to large-scale, public

policy interventions but not as relevant to more individualized interventions and vice-versa [39].

When this taxonomy was used by Lyons, Lewis, Mayrsohn, and Rowland (2014), they

identified fourteen BCTs from the BCTTv1 associated with successful interventions in the

literature [42] :

Table 1: Lyons' Behavioral Change Techniques associated with Successful Interventions

Behavior Goal Setting Problem Solving Outcome Goal Setting

Action Planning Review of Behavior Goals Commitment

Feedback on Behavior Self-monitoring of
Behavior

Social Support

Instruction on how to
Perform the Behavior

Information about
Consequences

Social Comparison

Behavioral
Practice/Rehearsal

Rewards

Of these, they highlight behavior goal setting, review of behavioral goals, feedback on

behavior, self-monitoring of behavior, and rewards as especially prevalent among physical

activity trackers. Additionally, prior research indicates that users may prefer apps which include

BCTs related to goal-setting and self-monitoring over those associated with social support [38,

43]. For a specific use case, relevant BCTs may be identified through the use of determinants,

8

broader concepts such as “self-efficacy” and “self-regulation” that can be linked to specific BCTs

such as “instruction on how to perform the behavior” and “goal setting” [44].

2.3 Just-In-Time Adaptive Intervention

Just-In-Time Adaptive Interventions (JITAI) is another framework used in the design the

WiSAT app. JITAI encourages the use of context-awareness features of smartphones to

dynamically control the behavioral intervention [38]. The SitCoach app is an example of a JITAI

system [45]. This mobile application uses the phone’s accelerometer to measure the time an

office worker is sedentary and sends reminders to take a break only when a user-specified time

threshold of sedentary time has been exceeded [46]. Conversely, a non-JITAI application would

be unaware of context and send reminders regardless of whether or not the user was sedentary.

The JITAI framework is based upon four components: (1) decision points (when/how often an

intervention is deployed), (2) intervention options (what type of intervention is deployed at a

decision point), (3) tailoring variables (what interventions are options based on information

about the user), and (4) decision rules (the algorithm that links the tailoring variables to the

intervention options) [45].

2.4 Usability and Health Numeracy

The success of a mobile health application relies heavily upon its usability and design.

Prior work has revealed that users of gamified apps may stop using them if the usability or

design is poor [47, 48]. More generally, usability is important to any software system that

contains a user-interface (UI) [49]. As defined by Nielsen (1994), the five usability attributes are:

learnability, efficiency (the user’s ability to be productive with the system), memorability (the

user not having to relearn the system with each use), low error rate, and satisfaction

(pleasantness of use) [49]. Similarly, the ISO and NIST evaluate usability through effectiveness,

efficiency, and satisfaction [50, 51].

9

Usability principles are especially important to components of WiSAT that provide the

user with feedback regarding their behavioral change. As described by Ryan (2009), systems built

upon HBCT should monitor the behavior “proximally” and “distally” [33]. In other words,

individual behaviors should be measured (proximal), but the overall progress towards the goal

should also be tracked (distal). Additionally, the JITAI framework takes advantage of

distal/proximal goals [38]. A JITAI intervention may use various proximal goals to help the user to

reach the distal goal, and these proximal goals may inform the creation of the four JITAI

components described earlier [45]. In the context of WiSAT, individual goals are proximal

measurements, and overall regimen compliance is the distal measurement.

Some creativity is required when addressing ways to communicate the proximal and

distal information to the system user. As Nielsen points out, “the reality is that most people do

not acquire comprehensive expertise in all parts of the system, no matter how much they use

it.” [49] To this end, modern software designers stress the importance of simplicity in application

design [52, 53]. This is especially important in data visualizations (graphs, charts, etc.), where it is

imperative not to overwhelm the user with unnecessary data [54], as many users have poor

“health numeracy” (ability interpret numerical health information) and “graphical literacy”

(ability to interpret graphs) skills [55]. In WiSAT, the term “passive notification” is used to

describe sections of the user-interface that display graphical feedback on behavior.

 In the context of proximal monitoring, prior research describes the benefits of active

notifications. As an example, myHealthPal is a popular iOS application that incorporates HBCT. If

a user does not meet their goals, the application actively notifies them through a push

notification [56]. In another HBCT mobile application, study participants became more active

users of their system after introducing a feature to push live notifications to the user’s mobile

phone whenever new information was available [57]. For wheelchair users, Apple has

10

introduced new features to their Apple Health application specifically targeted at encouraging

users to perform wheelchair-specific exercise and movement [58]. These features include push

notifications to remind wheelchair users when it’s time to move [59].

2.5 Technical Design Philosophy

A major theme in the design philosophy of WiSAT could be described as “loosely-

coupled”. Loose-coupling helps ensure that WiSAT’s subsystems are as autonomous as possible

and that, whenever possible, changes in one subsystem or module would not require a

corresponding change in another system. This is especially important when developing multiple

subsystems in parallel and deploying updates or implementing features in any subsystem.

The microservices literature succinctly defines the concept of loose-coupling: “By

interacting through clearly defined interfaces, or through published events, each microservice

remains independent of the internal implementation of its collaborators” [60]. In WiSAT, this

concept was materialized through a communication paradigm that utilized well-recognized,

straightforward standards. For example, this thesis describes an application program interface

(API) that facilitates communication between the app and the hardware subsystems. It was

designed in such a way that any device with a Bluetooth module, regardless of hardware or

operating system, would be able to request and retrieve data from the logger without requiring

any knowledge of the internal state or workings of the logger. Likewise, the logger was designed

to not require any knowledge of the implementation of the WiSAT app beyond the information

provided to it through the API. This had the effect of creating modular systems that are as

resilient as possible to changes, upgrades, and bugfixes in their counterparts.

11

CHAPTER 3. DEVELOPMENT AND DESIGN PROCESS

The development of WiSAT was an iterative, development and design project rather

than a controlled experiment. This process was not perfectly sequential in all cases. Many of the

specific aims were conducted in parallel to each other. This research design allowed for the

transition of technology that was originally developed for research purposes into a consumer

product.

3.1 Specific Aim 1: Design and evaluate WiSAT’s user-interface

Table 2: Scope of Specific Aim 1

Subsystem Prior State of
Subsystem

Thesis Contribution Outside Scope of
Thesis (Third-Party
or Future Work)

App Early iterations of UI
design

 UI Evaluation

 Final UI Design

 Implementation
by external
vendor

3.1.1 Overview of WiSAT’s User-Interface Functionality

As with many other activity trackers, WiSAT was designed to be used without any

outside intervention from medical professionals or other specially trained persons. As such, the

user-interface design emphasized features which are approachable to a general audience and

clearly display information to the end-user.

 Upon installing WiSAT, the user first encounters a series of setup and initialization

screens (Appendix A). These screens allow the app to capture information for later use in the

algorithm subsystem. Specifically, the app prompts the user to perform a series of leans to

capture baseline information on their particular sitting behavior. Additionally, the user must

12

enter calibration parameters specific to their hardware system. During this setup, the user is

prompted to connect the app to the WiSAT hardware via Bluetooth for the first time.

 As part of initial setup, users are required to set their own goals. Consistent with HBCT,

the Goal Settings screen was designed to empower users to define their own goals. However,

their choices are bounded to a set of discrete values to ensure that goals are both useful and

realistic. These bounds were chosen based on past research regarding wheelchair users’ typical

weight-shift behavior [9, 20]. Users may select between 2 and 8 Weight Shifts per hour (in

increments of 1), 50 to 100 In-Seat Movement scores per hour (in increments of 10), and 1 hour

to 2 hours maximum time between shifts (in increments of 15 minutes). Users select their goals

using sliders. Sliders were chosen to allow the final design to be more accessible to users with

limited dexterity.

Figure 2: Goal Setting Screen

13

Following setup, the home screen is the first screen that the user encounters every

subsequent time the WiSAT app is launched. The home screen displays information for the past

hour related to the three WiSAT metrics (Weight Shift count, time between shifts, and in-seat

movement score). Clicking on either the “Weight Shift” or “In-Seat Movement Score” sections

allows the user to delve deeper into detail screens that display information on these metrics

according to day, week, or month views. Collectively, the home screen and these detail screens

constitute WiSAT’s passive notifications.

Figure 3: WiSAT Home Screen Sections

14

Figure 4: Month and Week Screens

 A “footer bar” on most WiSAT user-interface screens provides quick access to the Home,

Settings, and Information/Training screens. “Settings” allows the user to change their goals, as

well as other system settings. “Information and Training” provides information regarding

pressure ulcers, weight shifts, in-seat movement score, and app functionality.

 As with many activity tracker apps, WiSAT provides feedback on behavior through push

notifications, brief messages displayed on a phone’s lock screen that are often accompanied by

a tone or haptic feedback. These notifications constitute WiSAT’s “active notifications”. They

provide users the option to review their behavior goals, and suggest future actions. The JITAI

framework was useful in the creation of the push notification options for WiSAT. Two of WiSAT’s

15

three variables, Weight Shift Count and In-Seat Movement score, were used as tailoring

variables.

3.1.2 Prior Art

Specific Aim 1 built upon earlier design work, in which an initial WiSAT user-interface

was designed for the mobile app. These designs were never developed into a full-fledged app,

but existed as a series of prototype user-interface screens. In this prior work, an iterative design

process was used, in which members of the target audience were engaged with surveys and

targeted interviews [61].

Because several years had elapsed between the creation of the original WiSAT

prototype and the current effort, several more recent activity trackers, health, and wellnesses

smartphone apps were reviewed. Design elements that accomplished goals similar to those of

Figure 5: Prototype WiSAT Screens from Cheng, 2015

16

WiSAT were noted. For example, many apps included Goal Setting, Training information, Passive

Notifications, and Active Notifications. Elements from these designs inspired design features of

the new iteration, such as the circular, odometer style graphs and the slider used in the Goal

Settings screen. A full list of reviewed apps is in Table 3.

Table 3: Apps Reviewed:

NikeFit Fabulous Google Fit

Apple Health Jawbone Up Sweatcoin

iRest Fitbit Six Pack in 30 Days

Sleep as Android MyFitnessPal DiabetesPal

Sensimat VA Pressure Ulcer/Injury
Resource (VAPUR)

Medisafe

Using the previous WiSAT prototype and other prior art as a basis, two alternate WiSAT

prototypes (Figure 7) were created. These alternate designs featured differences in their Passive

Notification screens (Appendix B). The other screens and design features were kept constant

between the two alternates. Recent health and fitness apps were reviewed for further design

inspiration. Special attention was paid to those apps with some basis in HBCT.

Figure 6: Examples of Apps Reviewed: Jawbone Up (Far Left), Sweatcoin (midde left), Fitbit (right two)

17

Figure 1: Home Screens of Design A (left) and Design B (right)

Of the original fourteen BCTs from Table 1, eight were incorporated into the final design

of WiSAT, as outlined below:

Figure 8: BCT Implementation in WiSAT

18

3.1.3 UI Evaluation

A UI evaluation was conducted to assess the app’s design and overall usability.

Members of the target audience were engaged with the goal of identifying design elements

from both screen variants to be used in the final design. Ten participants were recruited, in

total. Participants were full-time wheelchair users, aged 18 years or older who had some prior

experience using mobile applications. This study excluded those who do not use a wheelchair as

their primary means of mobility because they are not in the targeted user group of the WiSAT

app. Additionally, this study excluded those under age 18 because the WiSAT app is targeted

primarily at adults- the group most at risk of pressure ulcers. Last, subjects without any prior

mobile application experience were excluded because smartphone ownership is a prerequisite

of the WiSAT system.

Participants were asked to interact with the two prototype versions of the UI displayed

on a smartphone through the Adobe XD app (Appendix B). They were asked to perform a series

of tasks involving navigating through screens and retrieving information (Appendix C). During

task execution, the researcher recorded the total time that the participant took to accomplish

the task.

Data from the UI evaluation was used to inform the next iteration of the design of the

WiSAT app. This evaluation was not structured to select a “winner” or “loser” between Design A

and Design B. Rather, the evaluation results were used to select elements from both designs to

include in the next design iteration.

Upon completion of the tasks, participants were shown the detail screens side-by-side

and asked for their opinion on each. Participants were shown the home screen and day, week,

and month screen from either the Weight Shift or In-Seat Movement score screens.

19

Additionally, participants were asked to interact with the prototype for a few minutes in order

to provide open-ended feedback on the app, as a whole. The final six participants were asked

for their opinion regarding active notifications and whether they would prefer to see

notifications at a specified time of day or if they preferred to see them arrive on an “as-needed”

basis.

Afterwards, participants were asked to complete a short survey to document their

satisfaction with the interface. A modified version of the Software Usability Measurement

Inventory (SUMI) was used as the survey instrument (Appendix D). The SUMI was developed in

the early 1990s with psychometric methods as a software usability survey tool [62]. NIST lists

the SUMI as one of several standardized survey tools suitable for measuring user satisfaction

[50]. In additional to its use in industrial contexts [63], previous academic studies on mobile

behavioral change apps have used the SUMI to measure user satisfaction [64, 65].

Results from navigational tasks were tabulated and compared across all ten participants.

To measure effectiveness, the number of participants who failed to complete each task was

noted. For efficiency, the time taken to complete each task was recorded and averaged for each

task.

Responses to the side-by-side comparison questions were used to determine how many

users preferred Design A or Design B’s interpretation of each passive notification screen.

Further, open-ended feedback from this part of the study was used to help identify which

features stood out to users as particularly desirable or undesirable.

Each user’s response to survey questions was coded as “satisfactory”, “unsatisfactory”,

or “neutral”. Satisfactory responses were counted for each question to determine how many of

the 10 users were satisfied with the specific element of the app which was addressed by that

particular SUMI question.

20

Responses to the question about active notifications were counted as either favoring

“as-needed” or “daily-reminder” active notifications. This information was used to tailor the

design of WiSAT’s active notification structure, including the selection of elements of the JITAI

framework used in the deployment of WiSAT’s active notifications.

3.2 Specific Aim 2: Coupling of the Hardware and Smartphone App Subsystems

Table 4: Scope of Specific Aim 2

Subsystem Prior State of
Subsystem

Thesis Contribution Outside Scope of
Thesis (Third-Party or
Future Work)

Hardware Version 1 Data Logger:

 Pre-production
Hardware and
Firmware for a
data logger
designed to
collect and store
sensor data from a
prototype sensor
mat

 API to allow for
communication
between Data Logger
and Smartphone App

 Update to Data
Storage and
Transmission Format

 Evaluation of
Production Hardware
and Firmware

 Battery Evaluation

 Hardware and
Firmware
development
performed by an
external vendor

 Sensor mat
development

App Only UI designs.
No prior
implementation

 Integration plan for
data communication
between app and
logger

 Development of a
standalone app to
test API

 Implementation
by external
vendor

The prior iteration of the WiSAT data logger and sensor mat hardware, “Version 1” or

“V1”, was built primarily for research purposes. Originally, V1 provided researchers with a

sensor-based solution to collect information pertaining to wheelchair user’s in-seat activities. V1

was deployed primarily in a research setting and experienced very little user-interaction aside

from its installation and removal by the research team. As such, usability was not a primary

concern. Additionally, because V1 only featured a hardware subsystem, all data was stored

21

locally on the logger, retrieved once at the end of each study via USB, and processed externally

from the WiSAT system. While V1 was a valuable research tool, it was not viable as a consumer

product.

Version 1 was converted into a consumer-product, “Version 2” or “V2”, during the

duration of this thesis. While there were many components involved in the development of

Version 2, Specific Aim 2 focused on the features of Version 2 that enabled communication

between the app and the logger. The interface between the hardware and app subsystems was

especially critical to WiSAT, as it involved transitioning a legacy hardware subsystem from a

research tool with locally stored data to a consumer product capable of communication with the

new smartphone app subsystem.

The original, Version 1, data logger was based upon the ADL16 logger by Gulf Coast Data

Concepts (GCDC). The logger consisted of two modules, each with dimensions of 2.75” x 2.00” x

0.80”. No Bluetooth communication existed in the original logger. The sensor mat consisted of

four Tekscan FlexiForce A502 sensors positioned on a flexible mat. In both versions of WiSAT,

the sensor mat was placed underneath the wheelchair user’s cushion, and the data logger was

placed in the side or rear of the cushion under the cushion cover. In both V1 and V2, raw, analog

data is collected from the WiSAT sensor mat at a rate of 4 Hertz, converted to a digital signal,

assigned a timestamp, and stored in an on-board SD card (Figure 9). Data stored on the SD card

was formatted as comma-separated values with each sample separated by a new line.

22

As a consumer-product, the development of Version 2 emphasized an accessible,

unobtrusive design, compatible with the other WiSAT subsystems. Through Specific Aim 2, the

data storage scheme was redefined, data formatting was optimized, an API was specified that

allowed for two modes of data transmission from the logger to app, and a battery solution was

assessed. Quality assurance was conducted on all firmware and hardware changes. This included

a capacity test to simulate the logger’s behavior after several months of operation (see

Appendix E for quality assurance and capacity test protocol).

Initially, plans were created to upgrade the logger’s processor to allow for faster, more

complex data processing. Additionally, data was to be stored in a SQLite database to utilize a

trusted, third-party data storage solution. However, due to external complications encountered

by the hardware vendor, this solution was abandoned in favor of one that continued to use the

original Version 1 processor and flat-file data storage.

Figure 9: WiSAT Data Acquisition (Version 1 and 2)

23

3.2.1 Data Storage and Batching

 The logger’s data storage scheme was redesigned in Specific Aim 2 to allow for reliable

communication between the app and logger. As a research device, the Version 1 logger stored

data with the assumption that it would be retrieved by researchers after data collection had

completed. When connected to a computer via a USB port, the logger would behave as a

portable flash drive and allow the researchers to retrieve data files directly from the logger’s file

system.

In Version 2, emphasis shifted to preparing data for transmission to the smartphone

app. It was assumed that retrieval directly from the data logger was now only necessary for

debugging purposes. Additionally, collected data no longer had clearly defined start and top

times, as it had in research conducted with the Version 1 logger. Instead, data was assumed to

be collected continuously.

For the work performed within the scope of this thesis, an assumption was made that

the fully-integrated system should be able to function with minimal support for a period of at

least six months. After this period, data could be manually cleared from the data logger and app

to avoid malfunction or an excessive consumption of hard drive space. This assumption

prepared the logger for long-term deployment in future research studies by preserving as much

data as possible in the WiSAT subsystems, in case it was needed for debugging or analysis

purposes.

3.2.2 Data Formatting

To help ensure consistent, reliable data transmission, Version 2 restructured the original

data storage format of the logger from comma-separated values (CSV) to Javascript Object

Notation (JSON). In Version 1, retrieving data through USB presented a much lower risk of lost or

corrupted data than the wireless transmission of Version 2. This introduced an added challenge

24

of accurately maintaining accuracy and consistency across subsystems, which the CSV format

was not able to adequately address. Therefore, both the format and content of the individual

batch files were assessed to minimize the risk of lost or corrupted data in the hand-off between

the logger and app. As part of this effort, timestamp formatting was revisited, resulting in the

decision to use UNIX timestamps throughout the WiSAT system.

3.2.3 API for Communication between Logger and App

WiSAT uses two modes of operation to manage communication between the logger and

the app. The first mode is the default behavior of the WiSAT system in which data is transmitted

regularly throughout the day. While both data integrity and transmission speed are important to

WiSAT, it was decided that data reliability was to be favored over processing speed in this mode

of operation. For the end-user, data is never displayed in true “real time”. Some of the app’s UI

screens display weight shifts or in-seat movement score for a specific hour, but no smaller unit

of time is visualized. Therefore, it was decided that the accuracy of the information reported

was more important than “up to the second” reporting of in-seat activity. However, this did not

negate the need for efficiency in WiSAT. It merely highlights that, in this mode of operation,

accuracy will be chosen over speed when a decision must be made between the two.

The second mode addresses a specific need within the app’s “Setup and Initialization”

procedure. Prior to their first use of WiSAT, the app prompts users to capture some baseline

data for later use in the algorithm subsystem. Because the app prompts users to perform

specific movements in real-time, it is crucial for the logger to transmit live data to the app as

efficiently as possible. In this scenario, speed is favored over data integrity.

3.2.4 Battery Evaluation

As a side-effect of Bluetooth integration and longer usage times, the data logger system

consumes more power than in Version 1. For Version 2, batteries of varying capacities and form

25

factors were considered. Each battery was tested through installation in the data logger,

charging it to a maximum capacity, and allowing it to discharge naturally while the logger was

turned on and connected to a loaded sensor mat. Voltages were recorded every two minutes in

the headers of the WiSAT batch files. These voltage readings were graphed, as shown in Figure

10.

Figure 10: Example Battery Plot

3.2.5 Quality Assurance

Appendix E outlines the hardware quality assurance (QA) process that was developed

during the course of this thesis. This process helped ensure that all incoming data loggers were

functional and met specifications. Additionally, it facilitated the early identification of firmware

bugs.

QA performed as part of Specific Aim 2 tested both isolated components, as well as

integrated parts. In evaluating the functionality and resiliency of individual components, it was

26

necessary to eliminate as many confounding variables as possible. For example, to evaluate the

Bluetooth API, a standalone Android app was written to issue commands to the logger. This

allowed the researcher to test the implementation of the API on the logger in isolation from the

WiSAT app. When a communication issue was encountered in an integration test between the

logger and the app, the standalone app helped narrow down the source of the issue by

eliminating variables during debugging.

3.2.6 Work Outside Scope of Thesis

Outside the scope of this thesis, a form factor change by the vendor allowed the entire

Version 2 logger to fit inside a single 2.75” x 2.00” x 0.80” module. Additionally, a Version 2

sensor mat was developed alongside the Version 2 data logger. The Version 2 sensor mat was

professionally manufactured and included an updated connector and six force sensors.

Figure 12: Version 2 Data Logger

Figure 11: Version 2 WiSAT Sensor Mat

27

3.3 Specific Aim 3: Preparation of Algorithm Subsystem

Table 5: Scope of Specific Aim 3

Subsystem Prior State of Subsystem Thesis Contribution Outside Scope of
Thesis (Third-Party or
Future Work)

Algorithm
Library

 Classification
algorithms for
Occupancy, Weight
Shift, and In-Seat
Movement Score
detection written in
Matlab

 Calibration function
written in Matlab

 Initialization function
to collect baseline
information written
in Matlab

 Translation of
algorithms from
Matlab to libraries
compatible with
the WiSAT app

 Added features to
algorithms to
allow for
continuous data
processing and
resiliency to
smartphone
power cycles.

 Development
and testing of
the algorithms in
Matlab

 Implementation
of algorithm
coding in Java
and Swift was
conducted with
the help of the
app vendor and
two
undergraduate
developers

Figure 13: Version 2 Data Logger with Case Removed

28

 The WiSAT classification algorithms were originally developed to work on discrete data

sets within a pre-configured Matlab development environment. The smartphone adaptation

was conducted in two parts. First, the algorithms were translated from a procedural coding style

to object-oriented programming languages. Since WiSAT supports both Android and iOS

operating systems, this meant translating the algorithms into Java and Swift, respectively. This

translation effort emphasized “loose-coupling” between the algorithms and the rest of the app.

This meant simplifying and standardizing the algorithms entry points and outputs across

revisions of the algorithm code. Keeping the algorithms modular allowed the app developer to

seamlessly exchange older versions of the algorithms with updated ones without having to

rework any of the surrounding application code. Conversely, changes in the mobile app did not

affect the internal workings of the algorithm code.

 Second, the algorithms were modified to function continuously instead of only on

discrete data sets. While in the laboratory environment, the algorithms processed data sets in

discrete batches that were produced in controlled environments. However, in the smartphone

app, data was received continuously. Thus, by definition, there was no predetermined end to

the incoming data. Additionally, in a smartphone app, it is impossible to predict interruptions to

the incoming data. For example, when one hour of sensor mat data is processed by the Matlab

algorithms, the entire hour’s data is passed into the algorithms prior to their execution, and it is

known beforehand that the start and end time of any occupancy events, weight shifts, and

activity occur within the duration of this hour.

The smartphone algorithms must process data one datapoint at a time and must

account for external events that may lead to corrupt or incomplete data. For example, power

failure on the data logger could lead to gaps in the incoming data, and Bluetooth issues could

lead to delays in data being received by the app. In Specific Aim 3, features were added to the

29

algorithm libraries to build resiliency against these external events without sacrificing any of the

functionality of the original algorithms. Specifically, a strategy was introduced which provided

the app with context regarding occupancy and weight shift events that occurred prior to the app

restarting. Further, this strategy managed data interruptions by basing all algorithm calculations

on the timestamps of the datapoints and ignoring the specific times in which data is received.

A standalone testing tool was developed to test the algorithms in isolation from the app

subsystem. This allowed for rapid testing without the additional setup time involved with

deploying the algorithms in a mobile app. This also aided in pinpointing the source of bugs as

they arose. Algorithms were evaluated by comparing their performance against that of the

original Matlab algorithms, as well as against data collected in the field. Testing was also

conducted through the app after the algorithms subsystem had been implemented by the app

developer.

3.4 Specific Aim 4: Integration of the WiSAT Subsystems through Multi-layered

Architecture for the WiSAT Smartphone App

Table 6: Scope of Specific Aim 4

Subsystem Prior State of
Subsystem

Thesis Contribution Outside Scope of
Thesis (Third-Party
or Future Work)

App Early iteration of UI
design

 Database Schema

 Integration plan for
interfaces between
data logger and
app, app to remote
API, and algorithm
library to app.

 Selection and
management of
App development
contractor

 Implementation
of App
(development
and coding)

30

Remote
API

No prior version API Specification Implementation
of the API on a
third-party server

 Hosting of the
API Endpoints

Due to its centrality to the system, the smartphone app is the only subsystem to directly

integrate with all three additional subsystems. Additionally, the app experiences the vast

majority of interaction with the end-user. Specific Aim 4 was responsible for the supporting

framework that enabled the app to fulfill these requirements, and therefore, tied the individual

components of WiSAT into one fully-integrated system.

Prior to the onset of this thesis, it was decided that the system would target the Android

and iPhone platforms and display information pertaining to WiSAT’s three main metrics: number

of weight shifts, time between weight shifts, and in-seat movement score points. System

requirements related to data collection and flow is consolidated in the graphic displayed in

Figure 14. Additional system requirements were related to the user-interface design discussed in

Specific Aim 1. Some additional technical requirements were also defined, such as the use of a

Realm database in the mobile app. This conceptualization of the WiSAT data flow and system

requirements informed the development of the three layers of the WiSAT app: UI layer,

application layer, and database layer. A full list of system requirements are outlined in Appendix

F.

31

An experienced software development firm, Apeiro Technologies, was contracted to

write the smartphone application code according to the research team’s specifications.

Principles of the Agile Methodology, as well as the Iterative and Incremental Development

model were employed during the development lifecycle of the app. The system was developed

iteratively to identify potential flaws early in the development lifecycle. This enabled the team to

spot technical and process-related flaws early, improve overall product quality, work on multiple

systems in parallel, and accommodate changes as they arose [66-68]. This methodology was

Figure 14: WiSAT System Requirements and Data Flow

32

especially relevant to the goals of Specific Aim 4, as it helped ensure that a change in one

subsystem could be quickly accounted for in the other subsystems.

Specific Aim 4 also included a specification of the API used by the app to communicate

with the remote server subsystem. The app’s database schema was used to construct this

specification, and individual endpoints mirror their counterpart tables in the schema. Early in

the development process, it was decided that WiSAT would be a primarily offline system.

Ultimately, the requirement to upload information to a remote server was done for research

purposes and is the artifact of WiSAT’s research grant. WiSAT was designed so that the remote

server subsystem could be removed, if desired, once WiSAT is deployed as a consumer product.

 Since it is never assumed that the user has a guaranteed internet connection, all data

processing is done in the app subsystem, and the remote server functions merely as a place to

collect and aggregate user data for future research and analysis purposes. No data is received by

the app from the server, and no web portal or data analysis tool is currently planned to interface

with this remote server. Research partners at the University of Pittsburgh’s Health and

Rehabilitation Informatics lab were engaged to implement and host this API.

Quality Assurance of WiSAT was conducted at the task and system level. Functional test

cases were written around individual tasks, where appropriate, to ensure that they were bug-

free and working as expected (Appendix G). Smoke testing was conducted according to

expected use-cases, and exploratory testing was conducted to identify potential edge cases.

33

CHAPTER 4. IMPLEMENTATION, DELIVERABLES, AND RESULTS

4.1 Specific Aim 1: Design and evaluation of a user-interface
4.1.1 Passive Notifications

 Several key pieces of information were obtained from the UI Evaluation that contributed

towards the final design of WiSAT. Efficiency and Effectiveness results are listed in Table 7 and

Table 8. None of the average times to complete specific tasks exceeded 30 seconds. Considering

this was the first time any of the participants had interacted with the app, none of these task

completion times were especially high and did not lead to any changes in the final app design.

Table 7: Efficiency and Effectiveness Results of UI Evaluation – Alternate Designs

2.1 Go to the
screen for weight
shifts. In which
hours did the user
meet the weight
shift goal?

2.2 Navigate to a
screen that shows
weight shift
statistics for the
month. How many
times did this user
miss their goals in
the past month?

3.1 Go to the
In-Seat
Movement
(ISM) Score
screen. Check
the ISM Score
status for the
day.
Comment on
the ISM Score
with respect
to the goal

3.2 2. Navigate to
the Weekly
information. In
how many days
was the ISM goal
met for the
week?

Design A

Average 21 7 7 4

Highest 58 15 16 9

Lowest 9 4 4 1

Standard Dev 17 4 4 3

Misses 2 1 3 1

Design B

Average 19 10 9 5

Highest 52 34 19 8

Lowest 7 4 5 1

Standard Dev 19 10 5 2

Misses 5 1 2 2

34

Table 8: Efficiency and Effectiveness of UI Evaluation - Information and Settings Screens

Sequence 1:
1.1 Go to the
Information
page. Go to
the
information
about battery
charging

Sequence 1:
1.2 Read
information
and comment:
was it clear?
Do you
understand
how you
would charge
the battery?

Sequence 2:
1.1 B Go to the
Information
page. Go to
the
information
about Pressure
Ulcers.

Sequence 1:
4.1 Go to
settings
page. Go to
the setting
a goal page

Sequence 1:
4.2 Set an
ISM Score
goal of 80
per hour

Average 12 21 5 4 10

Highest 36 40 12 10 25

Lowest 3 2 2 1 2

Standard
Dev

11 13 3 3 9

Misses 2 0 1 0 1

 In terms of effectiveness, five participants had trouble with task 2.1 in Design B: “Go to

the screen for Weight Shifts. In which hours did the user meet the weight shift goal?”. Three of

these five failures were due to difficulties interpreting the graph. The other two were navigation

issues. Based on this, the “Day” and “Week” screens were revised for the final design. Feedback

received in the side-by-side comparison (Table 9) and open-ended feedback (Table 10) revealed

a compromise between the two designs. Bar Charts from Design A replaced the Line Graph of

Design B, but colors and numbers from Design B were utilized in the final design (Figure 15).

Table 9: Side-By-Side Evaluation of Detail Screens

 Home Day Week Month

Prefers Design A 8 5 4 5

Prefers Design B 1 4 5 3

35

Table 10: Open-Ended Responses to Day and Week Side-By-Side Comparisons

Day Week

1 B: Likes to be able to read off data
points. Likes that there are numbers in
the circles in the graphs

B: Likes the color-coded data points

B: Likes having more data

2 B: “really easy” – likes numbers. He
would rather not look on X and Y axis to
figure out the time and score

“Bar graphs are easier to read”

“One is easier to read. One is more
convenient”

B: Likes “days of the week at bottom and
times and things”

B: seems like more information

3 Likes bar graph style of A but likes
numbers in B

Wants a combination where we have a
bar graph with numbers

Likes the way that screen A displays
information (“title”: “number”)

Likes how B also includes the Goal on
screen

Likes the wording on screen A

B: Likes bar graph with numbers

Wants to have more summarized
information (as in A) by default, but
wants to see more information by
clicking on a day

Likes screen variants about the same

Likes bar graph

4 A: Prefers bar graphs

Line straight across lets me pick out
when goals are met

Likes having the current time displayed

B: Looks like an Excel graph

He said it was a close decision between
the two

A: more info on bottom

5 Not sure which he liked better, at first

A: Aesthetics better; function the same

B: likes numbers

B: likes having more information
(especially with regards to max time)

“Definitely B”

6 A: Clearer; Can read chart right away A: Seems more clear

36

B: Has to go from left to right and count
with his finger

7 Doesn’t like PM/AM

B: Likes that the circle contains numbers;
More information at a glance

“Brain resets” when having to shift
focus: He compared this to how he keeps
his file folders all in one line

B: Crisper, more direct

Harder for him to process more
information

Would like B because of the breakdown
of max weight shift per day: doesn’t have
to think about it as much

8 “I prefer bar charts”

“To me it’s easier to read bar charts”

“Better organized”

“More detailed”

9 Prefers line graphs versus bar graphs

“Information is the same”

Likes the actual number being displayed
in the line graph

A: “I like this one a little bit better”

A: “it gives you a little bit more
information”.

B: “Some of it more relevant than this
one”

10 A: easier to read

“Less things going places” - referring to
line graph

“B confuses me for a minute”

“Times in A match up easier for me” –
referring to matching X axis to the goals

“About the same to me”

 B: “I may like this one a little more” –
referring to the max time between shifts
at the bottom of the screen

Liked max time in bottom of screen

“A doesn’t show goal”

37

A similar process was used to implement other changes in the final design. For example,

the final home screen used green and red to differentiate between passing and failing, as in

Design B, but it inherited its odometer style graphs from Design A. Likewise, the final month

screen design used Design B’s style of calendar, but “Daily Average Hours in Chair” and

“Average Hourly Shifts” below the calendar as in Design A.

 As seen in Table 11, 26 of 29 SUMI questions received satisfied responses from at least 5

(50%) of users. Because this indicated that most participants appeared satisfied with the WiSAT

prototype, the results of the SUMI survey did not directly lead to any changes in the final design.

However, these results may be a useful point of comparison if the SUMI is deployed in future

usability studies of WiSAT.

Design A Design B Final Design

Figure 15: WiSAT Design Alternatives

38

Table 11: Summary of SUMI Results

 # Question Satisfied
Respondents

Unsatisfied
Respondents

Neutral
Respondents

Subscale A: Affect (i.e. likeability)

1 Working with this software is
satisfying.

9 0 1

2 The way that system
information is presented is
clear and understandable

9 0 1

3 Working with this software is
mentally stimulating

7 1 2

4 There is never enough
information on the screen
when it’s needed

7 3 0

5 I feel in command of this
software when I am using it.

9 0 1

6 I prefer to stick to the facilities
that I know best.

4 3 3

Subscale B: Helpfulness

1 I think this software is
inconsistent (This question
accidentally left out of survey
for Participant 1)

8 0 1

2 I would not like to use this
software every day

5 2 3

3 I can understand and act on
the information provided by
this software.

10 0 0

4 This software is awkward
when I want to do something
which is not standard.

5 1 4

5 There is too much to read
before you can use the
software.

7 1 2

6 Tasks can be performed in a
straightforward manner using
this software

10 0 0

39

7 Using this software is
frustrating

10 0 0

8 The software has helped me
overcome any problems I
have had in using it.

4 0 6

9 I keep having to go back to
look at the guides.

7 1 2

Subscale C: Control

1 It is obvious that user needs
have been fully taken into
consideration.

9 0 1

2 There have been times in
using this software when I
have felt quite tense.

8 0 2

3 The organization of the menus
or information lists seems
quite logical

10 0 0

4 The software allows the user
to be economic of keystrokes.

8 1 1

5 There are too many steps
required to get something to
work

10 0 0

6 It is easy to make the software
do exactly what you want

9 0 0

7 I will never learn to use all
that is offered in this
software.

8 0 2

Subscale D: Learnability

1 The software has a very
attractive presentation.

8 0 2

2 Either the amount or quality
of the help information varies
across the system.

1 5 4

3 It is relatively easy to move
from one part of a task to
another.

10 0 0

4 It is easy to forget how to do
things with this software

9 0 1

5 This software is really very
awkward.

10 0 0

40

6 It is easy to see at a glance
what the options are at each
stage

9 0 1

7 I have to look for assistance
most times when I use this
software

9 0 1

Elsewhere in the app, user feedback informed a few additional changes. For example,

the pressure ulcer information found in the Information and Training screen was updated to

include a few additional stages of pressure ulcers that were not in the original screen.

Additionally, feedback revealed that the logger’s battery life indicator on the home screen was

easily confused with the battery life indicator of the smartphone itself. This was remedied by

moving the icon lower in the home screen.

4.1.2 Active Notifications

Originally, two decision point options were considered. The first option would send push

notifications on a predetermined schedule regardless of external events. The second option

allowed for push notifications to arrive based on some action on the part of the user. Six

participants from the UI Evaluation were asked about their preferences between the two

options. Four of the six preferred push notifications arriving based on some user action (with

one participant undecided). From this, it was decided that the decision point should be reached

once every time the user reached a certain amount of hours in their chair (as opposed to a

certain time of day). A five hour occupancy time was chosen following a review of push

notifications in other, similar apps. One of the key lessons learned from other apps was that it

was crucial to strike a balance between annoying the user with too many notifications and not

reminding them enough. Additionally, using a five hour window minimized the effect that any

delayed data processing might have upon shorter time periods. For example, a 30 minute delay

is 25% of a 2 hour window, but only 10% of a five hour window.

41

WiSAT’s Decision Rule simply asks whether or not the Weight Shift or In-Seat Movement

score goals were met, on average, for the past five hours of occupancy. The user may see one of

four Intervention options based on whether one, both, or neither of these goals were met. All

four intervention options involve sending a push notification to the user to remind them of their

performance. Users are congratulated if their goal(s) were met and encouraged to meet the

goal(s) that they didn’t meet. Messages were kept to under 150 characters to ensure that they

fit on all targeted smartphone devices.

Figure 16: Example of JITAI in WiSAT

4.2 Specific Aim 2: Coupling of the Hardware and Smartphone App Subsystems

4.2.1 Data Storage and Batching

Version 2 uses flat-file data storage, but files are divided into two-minute batches. The

logger’s file system is divided into three sub-directories: CURR, BACKUP, and READY (Figure 17).

As data is collected by the logger, it is temporarily stored in a file in the CURR directory.

Following the completion of the batch, the file is moved to READY, where it remains until

requested by the smartphone app. Once transfer to the app is completed, the batch is stored in

BACKUP until manually removed from the logger for debugging or research purposes.

42

Figure 17: Data Logger's Root Directory as Viewed by a Windows PC

Two-minute batches were chosen following capacity testing, as they balance the

concerns of small and large batch sizes. Smaller batch sizes are preferable for two reasons. First,

batch files are not sent to the app until they were completed. Therefore, there is an inherent

time delay between the app and the logger. This delay increases as the batch size increases. As

an extreme example, a very large batch size, such as a one-hour batch, could potentially affect

user-experience. Any weight shifts or in-seat movements that occur during that batch would not

be received by the app for an hour or more. Second, smaller batch sizes minimize the total data

lost in corrupt batches. As with any such system, an occasional lost or corrupted file may occur

over the lifetime of the system. Minimizing the amount of data contained in each batch also

minimizes the amount of data that is lost when this occurs.

 On the other extreme, reducing the batch file to an extremely small size bring its own

risks. Due to the presence of a header in each batch file, there is additional overhead associated

with each batch file transfer. If the batches were reduced to an extremely small size, for

example, one sample per file, the logger would effectively be streaming data with the added

overhead of header information. Further, as the size of each batch decreases, the number of

batches required to capture the same amount of data increases.

43

Capacity tests revealed that the logger’s file system experienced two problems as the

number of files increased to the tens of thousands. First, each new batch file would take an

increasingly longer time to save to the file system as the total number of files in the logger’s

hardware increased. During the time that the file was being saved to the logger’s file system,

data collection and Bluetooth communication would suspend. The suspension of data collection

was corrected through a firmware update. The Bluetooth communication issue was not as easily

corrected, but since it merely delays data transfers and does not result in data loss, this did not

present an extreme risk to the system.

Second, testing revealed that each directory in the logger was limited to a number of

files less than the capacity of the 16-bit integer which was used for file indexing. In other words,

no directory could exceed 65,535 files. Therefore, if an extremely small batch size was chosen

(~1 second), this limit could be exceeded in the READY or BACKUP directory with a single day’s

worth of data. However, with a two-minute batch, over 90 days of data could be stored in a

single directory before this limit would be exceeded. To further protect against this issue, the

BACKUP directory was divided into sub-directories. Each sub-directory was designed to hold

batch files for a specific day, which greatly diminished the chances of an individual folder

reaching the 65,535 file capacity limit, even over the course of many months.

4.2.2 Data Formatting

As seen in Figure 19, the Version 2 JSON structure conveys information via nested

objects consisting of key-value pairs. For example, the key, “Status”, contains a nested object as

its value. Within this object, three key-value pairs provide diagnostic information about the

current state of the logger. The “DataList” key contains an array which stores the data samples

from the logger. Each object within array represents a single sample and consists of a

Timestamp, Sensor1, Sensor2, Sensor3, Sensor4, Sensor5, and Sensor6.

44

Three benefits were realized through this format. First, Version 1’s CSV format relied on

the assumption that the six sensors were arranged in the correct order for every sample.

Therefore, a missing comma, data value, or line return (as may occur during Bluetooth

transmission) could potentially obfuscate the data. Since each piece of data was enveloped in a

key-value pair in Version 2, it became more explicit which sensors belonged to which values.

Second, because of the prevalence of JSON among smartphone apps, the format kept

deserialization on the smartphone app relatively simple. Third-party software libraries are

readily available for both Java and Swift that aid in JSON deserialization. Further, because JSON

is object-based, it provided the basis for which to form the basic WiSAT data objects in the

smartphone. Last, JSON provides a more human readable format than other solutions, as it does

not require any special software or tools to read and interpret. This was important during

development and testing of all subsystems.

Figure 18: Version 1 CSV Data (As Viewed in Notepad++)

45

Figure 19: Version 2 JSON Data (Viewed in Notepad++)

 Version 2 also faced time reporting constraints that were not present in the research

environment. Version 1 reported its timestamps as values relative to the time that the logger

began recording data. As seen in Figure 18, a single, human-readable timestamp was recorded

at the beginning of the CSV file, and each subsequent data sample included a “Time” value that

counted up from the start of the file. However, with Version 2, consistent timestamps needed to

be maintained across the four subsystems. Additionally, as a consumer product, it was

necessary to maintain accurate time across timezones, daylight-savings-time, and other nuances

of time reporting.

Unix seconds were chosen as the standard by which to measure time across the entirety

of the WiSAT system, including the data logger. Unix seconds allow WiSAT to express time as a

single floating-point number while avoiding the complexities of parsing human-readable dates.

Because Unix seconds represent time according to the Coordinated Universal Time (UTC)

standard, timezone and daylight saving time issues were also avoided. In the smartphone app,

46

Unix time is translated to human-readable time only when it needs to be displayed to the end-

user.

4.2.3 Bluetooth and Logger to App API

 A communication scheme was established to facilitate the transmission of data between

the Version 2 logger and the WiSAT app. In Bluetooth Low-Energy communication, “Master”

refers to those devices which initiate and manage connections, and “Slaves” are the devices that

accept the connection from the Master [69]. The Master device typically has more resources

than slave devices[69]. For this reason, WiSAT was designed such that the smartphone always

serves as master, and, therefore, initiates the connection with the logger, which serves as the

slave device.

Two modes of communication were conceived. First, a “batch” mode was created to

address WiSAT’s default use-case, in which data is transmitted regularly during the normal

operation of the system. In this mode, the logger will attempt to send the oldest JSON batch file

in the READY directory to the smartphone whenever it receives a “getnext\n” string from the

app. Upon receipt of the complete batch file, the smartphone deserializes the file and saves it to

the app’s database. If no errors are encountered in this process, the phone issues a command to

the logger: “received?batch=[batchID]\n”, where the “batchID” argument is substituted with the

specific Batch ID number from the header information of that JSON batch. This command lets

the logger know to move that file to the BACKUP directory. Afterwards, the app requests the

next batch in the queue by issuing the “getnext\n” command again. The cycle repeats until the

47

logger has transmitted all files in the READY directory. While there is an inherent time cost to

this approach, this approach was chosen to minimize data loss as much as possible.

WiSAT’s second communication mode allows the app to receive data in real-time as the

user is guided through setup and initialization. Known as “streaming” mode, this mode streams

data continuously from the logger to the app, similar to the way that a Bluetooth headset

system would stream music or other audio. WiSAT’s streaming mode issues the following

command to the logger to tell the logger to begin streaming live data to the app:

“stream?=true\n". Once all initialization data has been captured and streaming is no longer

required, the app issues “stream?=false\n” to turn streaming mode off.

Figure 20: Batch Mode Operation

48

A third command issued by the app resets the internal time on the logger. The data

logger is subject to occasional clock resets due to firmware issues or external events. When a

reset occurs, the time is set back to the system’s default time (usually January 1, 2007). In

Version 1, this error could be manually corrected by uploading a configuration file to the

datalogger. Alternatively, it was sometimes possible to retroactively correct inaccurate

timestamps programmatically during data anlaysis. In Version 2, this process was simplified by

providing a command by which to set the logger’s internal time: “time?set=[time]\n”.The time

variable is replaced with the current Unix timestamp. As a safeguard against occasional time

resets, the app was programmed to issue this command upon connecting to a logger and once

every hour afterwards.

4.2.4 Battery Evaluation

Two decisions were reached from battery evaluation. First, it was decided to place two

500 mAh lithium ion batteries wired in parallel inside the logger (Figure 21). This provided

WiSAT with an estimated 75 hour maximum operation time before having to be recharged. This

was the greatest time that could be expected without modifying the logger’s form factor or PCB

layout to fit higher capacity batteries. Second, these graphs informed the decision to switch the

logger into “low-power mode” upon detecting a charge of 3500mv or lower. Low-power mode

forces the logger to stop logging and all non-essential processes in order to maintain the time on

the logger’s internal clock. In Version 1, this mode activated when the logger dropped to

3200mv or lower, but Version 2 changed this, because the cost of a slightly shorter battery life

was deemed worth the added safeguard of maintaining the logger’s internal clock as long as

possible.

49

4.3 Specific Aim 3: Preparation of Algorithm Subsystem

4.3.1 Goal 1 – Algorithm Translation

The first goal of Specific Aim 3 was the translation of the algorithm subsystem from

Matlab to object-oriented languages. The algorithm subsystem consisted of five main features:

Table 12: Algorithm Features

Component Function

Calibration Calibrates WiSAT Data according to specific hardware

Initialization Creates Scaling Features based on the user’s sitting
behavior. Establishes reference points for upright
posture, front leans, right leans, and left leans. These
reference points are used in other classifiers in the
algorithm library

Weight Shift Classifier Identifies Weight Shifts from calibrated raw data.

In-Seat Movement
Classifier

Identifies In-Seat Movement “points” from calibrated,
raw data.

Occupancy Classifier Identifies segments of data in which the user is seated.

 This effort began with an assessment of the state of the algorithms prior to translation.

Appendix J was created to document the milestones through which WiSAT data passes on its

Figure 21: Battery Configuration

50

way to the Weight Shift Classifier. As seen in the visualization, Calibration and the Occupancy

Classifier are included as milestones in this process. Additionally, the Scaling Features created by

the Initialization function are utilized within several of the milestones. The In-Seat Movement

Classifier follows a similar workflow with fewer milestones, so it was developed last.

 As with the rest of WiSAT’s development, this translation effort followed a theme of

loose-coupling between the algorithm and app subsystem. To this end, it was decided that the

algorithm subsystem should only have access to information and data that was explicitly passed

to it by the app subsystem. This means the algorithms do not directly create, modify, or delete

any data in the app subsystem, including the database layer. Although this constrained the

algorithm subsystem, it also allowed this specific aim to satisfy its goal of keeping the algorithms

modular and allowed the app and algorithms to be developed independently of each other.

4.3.2 – Algorithm Resilience

The second goal of Specific Aim 3 introduced constraints related to processing data

continuously in a volatile, smartphone environment. Specifically, the algorithms needed to be

resilient to both the app and logger being powered off. For example, when the logger is turned

off, no data is logged. The next time that logger is powered on, the app would receive new data.

In this scenario, a large time jump would exist between the last processed data and the new

incoming data points. The algorithm would need to gracefully handle the time gap and recognize

that a gap of several hours, for example, should not be reported by the occupancy classifier as a

continuous in-seat session.

A second, very common scenario would occur whenever the app was closed by the user,

crashed, or was terminated by some other means. Unlike the Matlab algorithms, the

smartphone algorithms operate under the assumption that any information stored in volatile

51

memory could be lost unpredictably at any point during the operation of the algorithm. Any data

not returned to the rest of the app for storage in the database could be lost without warning.

In summary, constraints faced by the algorithm are as follows:

 The algorithms cannot directly read, write, or modify any data or information in the

database or the surrounding app without it first being passed in to the algorithm

library by the app

 Data coming into the algorithms is not guaranteed to arrive at a consistent rate or on

a specific schedule. This is due to the unpredictability of the hardware and app

subsystems being turned on and off, as well as Bluetooth connectivity issues.

 Gaps in the data may occur due to the hardware subsystem being turned off.

 Volatile memory may be lost at any time due to the app being closed.

 The algorithms should be able to handle sampling errors if the data logger produces

an error where the sample rate exceeds or drops below four hertz.

Based on these constraints and the two goals of Specific Aim 3, the inputs, outputs, and

potential error conditions were defined for the algorithm library. Three entry points (“methods”

in object-oriented terminology) were defined for access to the five features described by Table

12.

Prior to saving the data to the mobile database, the calibration method adjusts the data.

It is the only method which directly receives the actual “raw” data from the logger. This was

done to minimize the risk of uncalibrated data or twice-calibrated data entering the rest of the

algorithm library, and ensured that only calibrated data was to be stored in the database.

Therefore, the rest of the system could assume that any data retrieved from the database was

calibrated and ready for use. Additionally, a database table was added to the schema to store

52

the calibration parameters entered by the user for their specific hardware. A “WiSATDevice”

object was defined to convey data from this table to the Calibration method.

Second, initialization was separated from the rest of the algorithms to allow it run in

tandem with the logger’s “streaming” mode. A single entrypoint, the “processIntialization”

method, accepted four lists of WiSATData objects representing the upright, front lean, left lean,

and right lean data. An AllScalingFactors object was created to store the outputs of the

initialization algorithm, which was then stored in a database table, “ScalingFactors”. Figure 22

illustrates this workflow.

53

Figure 22: Initialization Algorithm Data Flow

Figure 23: Batch Mode Algorithm Data Flow

54

Last, the Occupancy, Weight Shift, and In-Seat Movement classifiers were combined in a

single method. Unlike the initialization algorithm, this method was intended to receive and

process data collected during the logger’s “batch” mode. Named “addOccupancyDataPoint”, this

method receives a single WiSATData point at a time. The app vendor was instructed to pass in

unprocessed data from the RepoRawData table from oldest to newest. During processing, this

method would check for Occupancy, Weight Shifts, and In-Seat Movements utilizing the

milestones outlined in Appendix J.

 Because these three events occur over longer time spans than the amount of time

represented by a single datapoint, a “Singleton” object was leveraged to track the algorithm’s

state over time. In the Singleton architectural pattern, exactly one instance of a given object,

known as the Singleton, is instantiated for the entirety of the application’s runtime. In WiSAT,

this meant that this Singleton object was able to store information across multiple calls to

addOccupancyDataPoint. As each WiSATData entered addOccupancyDataPoint, the singleton

tracked whether the user was in the chair, or if the data was part of a Weight Shift or In-Seat

Movement.

When enough data was collected in the Singleton to determine that a Weight Shift or In-

Seat Movement had completed, the start and end time was saved in a Weight Shift or In-Seat

Movement object and added to a list in the Singleton. When the algorithm determined that the

user had left the seat, the start and end time of that occupancy session was recorded in an

occupancy object. At this point, the lists of Weight Shifts and In-Seat Movements, and the

occupancy object were packaged into DataPointHistory and returned to the rest of the app.

Additionally, a list of identifiers (the primary key from RepoRawData) of all WiSATData processed

during that occupancy session were bundled in DatapointHistory.

55

The app developer was instructed to retrieve the information from the returned

DatapointHistory object and save to the appropriate database tables. The WiSATData identifiers

were used to mark the datapoints as processed in the RepoRawData table.

Because the three metrics would only be returned at the end of an occupancy session, a

15-minute cap was added to prevent long occupancy sessions from delaying the return of data

to the app. When the 15-minute limit was reached, the algorithm would automatically return

DataPointHistory. When the next datapoint was passed to the method, the next occupancy

session would begin, and the algorithm lifecycle would repeat.

This workflow allowed the algorithm library to maintain information in volatile memory

across calls to addOccupancyDataPoint without the algorithm subsystem requiring access to the

app’s database. Additionally, data could be passed into the algorithm continuously without

Figure 24: Classification Algorithm Workflow

56

needing to be divided into segmented chunks. However, this workflow did not address the need

for the algorithm to maintain resiliency across the unpredictable restarts of the app. Further,

there was a need to pass some information, such as the Scaling Features from the Initialization

algorithm, into the classification algorithm only one time at startup and never again until the

next time the app was launched.

To address both these concerns, an architectural pattern known as the Builder Pattern

was used. According to this pattern, a WiSATClassifiersBuilder class was defined which could be

instantiated once at startup. Scaling Features and other parameters could be passed into the

builder object once. Afterwards, a special build() method in the builder object setup the

Singleton object and returned the WiSATClassifiers object, which contained the

addOccupancyDataPoint() method.

Because the builder object was run at startup, it was used to provide historical context

to the classification algorithm without the need to pass the historical information in each time

the method was executed. Besides Scaling Features, the app vendor was instructed to pass in

three parameters to the builder object: the last five minutes of processed data from

WiSATClassifiers classifiers;

AllScalingFactors scalingFactors = new

AllScalingFactors(uprightDataP,frontDataP,leftDataP,rightDataP)

;

WiSATClassifiers.WiSATClassifiersBuilder builder = new

WiSATClassifiers.WiSATClassifiersBuilder(scalingFactors);

builder.withLastWeightShiftEndTime(1545071000);

builder.withLastInSeatEndTime(1545071189);//1545071189

//pass in the last five minutes of RawData where IsProcessed =

True

builder.withLastFiveMinutesOfProcessedData(processedData);

try {

 classifiers = builder.build();

}catch (AlgorithmException e){

 e.printStackTrace();

}

 Figure 25: Builder Pattern Used to Create WiSAT Algorithms

57

RepoRawData, the last weight shift end time, and the end time of the last time the user was in

the chair. Each time the app restarted, these parameters ensured that the classification

algorithm was “smart” enough to capture weight shifts and in-seat movements that started prior

to the first unprocessed datapoint, as well as whether or not the previously processed data

segment captured the user in or out of their chair. This was important because some

classification rules applied to data captured within the first two minutes of occupancy. For

example, the Weight Shifts occurring in these first two minute would not be counted.

No WiSATData was permanently lost when the app restarted. Any information stored in

the Singleton was lost when the app was closed, so the algorithm would restart from the last

unprocessed datapoint when the app started again. WiSATData was only marked as processed

when the DataPointHistory object was returned. Therefore, a natural checkpoint was built into

the algorithms. Since DataPointHistory was returned at least once every fifteen minutes, less

than fifteen minutes worth of data would be lost from the Singleton each time the app closed.

Upon restarting, the app algorithm would start from the oldest datapoint that had not yet been

processed.

58

Figure 26: Builder Pattern Visualization

Figure 27: Singleton to Database Visualization

59

4.4 Specific Aim 4: Integration of the WiSAT Subsystems through Multi-layered

Architecture for the WiSAT Smartphone App

 For the purposes of this specific aim, the app’s architecture is conceptualized as a basic,

three-layered system (see Figure 28). First, the UI layer is responsible for capturing user input

and rendering the app’s screens and design features. The database layer stores all persisted data

in the application, including raw data, processed data (occupancy, weight shift data, etc), error

logs, and more. Last, the application layer serves as a middleman between the two. It is

responsible for most of the internal application logic and the interface between the algorithms

and the rest of the app.

Figure 28: WiSAT App Architecture

As a whole, WiSAT’s subsystems integrate with the smartphone app as visualized in Figure

29. The hardware subsystem communicates with the app using Bluetooth Low-Energy and the

API defined in Specific Aim 2. Within the app, the application layer, sends API calls to the

60

datalogger and accepts incoming data. It is also responsible for deserializing data from JSON and

saving it to the database. However, before saving to the database, the application layer passes

deserialized data to the algorithm library’s calibration feature. The application layer is also

responsible for pulling saved, calibrated data back out of the database and passing it into the

algorithm subsystem, as described in Specific Aim 3. Outputs of the algorithm subsystem are

received in the application layer and returned to the database. Periodically, the application layer

retrieves unsynced data from the database, transmits it to the remote server subsystem, and

marks it as synced. Finally, all user input is passed from the UI layer into the application layer to

the database, and all data displayed in the UI layer is passed from the database to the

application layer to the UI layer, where it is viewed by the user.

Figure 29: WiSAT Subsystems - Detailed

61

In the UI layer, the system requirements were defined a set of features that were rendered

as a UI prototype in Specific Aim 1. The prototype screens were used to create a UI flow diagram

to illustrate how users would interact with the system. This drove much of the functionality that

was implemented by the other two layers.

4.4.1 Database Layer

A database schema was created for the app’s database layer with the goal of creating a

location to “persist” WiSAT data. Here, the term “persist” refers to the ability of the database to

maintain data after the app is closed, as opposed to data in “volatile” memory, which is lost

when the app is closed. The schema was designed and visualized as a traditional, relational

database. However, it was implemented using a third-party, object-oriented database library,

“Realm Database”. Several benefits were realized from this approach. First, the formal schema

provided a familiar, common basis of communication across the various teams responsible for

the implementation of WiSAT. For example, the app developer and API developer implemented

their respective subsystems in isolation from each other using different technology stacks.

Having a common schema helped convey data requirements to both teams without needing to

delve into implementation details in each team’s respective domains.

Similarly, the schema helped ensure consistency across the data objects in each subsystem.

For example, the logger, algorithm, and app subsystems each contained a WiSATData object. This

object represented a single sample of pressure mat data. WiSATData consists of a timestamp and

six force sensor readings (one for each of the sensors in the sensor mat). In each of these

subsystems, WiSATData was stored differently. In the data logger, it was stored as an object

inside a JSON batch file (see Specific Aim 2). In the app, it was stored via Realm Database. The

algorithms did not permanently store this object, but they used this object as an argument in

62

several of their methods. The schema provided a reference with which to ensure that all

important information about WiSATData was captured by the app, as seen by the

“RepoRawData” table visualized in Figure 30.

Figure 30: Raw Data Table from Database Schema.

Representing data in a relational model provided a structure which satisfied WiSAT’s

requirement for consistent, accurate data. Foreign key relationships helped ensure that each

data could be tied to relevant metadata. For example, any given datapoint in RepoRawData

could be linked to its batch file of origin through the BatchTableID foreign key (Figure 31).

Primary keys were utilized to ensure that every piece of database data was uniquely identifiable

– even across subsystems. For example, the RawDataID used in the database could be used to

identify the same data sample in both the algorithm libraries and the smartphone app. Although

not a relational database, Realm provides features which allowed for the enforcement of these

constraints.

63

Figure 31: Foreign Key Relationships of RepoRawData

 Implementing the database through Realm Database provided benefits of its own. As

an object-oriented database, the app developer never needed to “translate” from Java/Swift

objects to SQL statements, nor did they need to manually build and maintain a separate

database. Instead, they utilized the Realm API to perform all database interactions through their

platform’s native development language. Object-Relational Mappers (ORMs) also allow

developers to avoid this translation between SQL and object-oriented languages. However,

ORMs operate as an additional layer between the database layer and the application and,

therefore, require additional processing time and system resources. As an object-oriented

64

database, Realm bypasses this constraint by storing the data as objects and minimizing data

conversion [70].

4.4.2 Application Layer

Many specifics of the application layer’s implementation were left to the app developer.

However, two important exceptions to this exist. First, is the implementation language which

the developer was instructed to use. Although WiSAT is designed to be a cross-platform app, the

decision was made to develop both the Android and IPhone apps in Java and Swift, respectively.

Alternative, cross-platform solutions, such as Xamarin, were considered. However, due to the

app’s dependence on Bluetooth, it was decided to remove the extra layer of abstraction

between the smartphone hardware and the app that would be added by the cross-platform

development languages.

Background processing was another area of the application layer which was dictated by

the surrounding system requirements. Here, background processing refers to code run “behind-

the-scenes” regardless of whether or not the user is actively engaged with the app. As an

activity tracker, WiSAT is designed to collect and process data from the logger whenever the

logger is active regardless of whether or not the app is open. Further, active notifications are not

be constrained to the lifecycle of the app. As such, the developer was instructed to use

background processing to ensure that the Bluetooth communication, algorithm execution, and

push notifications would not depend on the user leaving the app open on their smartphone.

4.4.3 Quality Assurance

 As in Specific Aim 2, evaluation of the app’s architecture was conducted against both

individual components and integrated parts. This is captured in the test cases outlined in

Appendix G. Some test cases were tested in isolation. For example, “The Weight Shift Screen

65

shall show daily data” was evaluated using test data to isolate the testing of the UI layer from

those tests aimed at the algorithms responsible for generating that data.

To facilitate this style of testing in the database layer, the app developer added a

feature to the app to export the database to the smartphone’s file system. This provided the

means to validate the database structure and pinpoint the source of errors. For example, during

one evaluation, the UI layer was not displaying Weight Shift or In-Seat Movement score

information. An exported database was examined, and the source of the error was quickly

identified as stemming from an absence of data in the RepoRawData table. As the issue was

investigated further, it became apparent that the issue was due to a Bluetooth communication

issue and had nothing to do with either the Weight Shift algorithm or the UI layer.

 Issues in the application layer were primarily diagnosed through TestFairy, a mobile

testing service which captures user interactions with the app in real-time, collects diagnostic

information regarding the host smartphone, and records application logs (Figure 32). As tests

were conducted against the app, the corresponding TestFairy session was monitored.

Application logs were used to diagnose crashes. Screen interactions were utilized to quickly

communicate bugs, crashes, and feature requests to the app developer.

66

Figure 32: Example TestFairy Session

The fully integrated system was evaluated by collecting data from a loaded sensor mat

through a logger and pairing the logger to the WiSAT app.Results of this testing were visible in

the app’s UI, the mobile database, and the remote server.

67

CHAPTER 5. CONCLUSION AND FUTURE WORK

 Through the product development effort described in this thesis, the WiSAT system is

prepared for the next steps in its journey to becoming a complete, consumer product. To further

evaluate the system, as a whole, a second stage usability study is planned to complement the

evaluation already conducted in this thesis. During this study, wheelchair users will be recruited

to use the WiSAT system during their daily routines for a period of one week. Results of this

study will be used to improve usability and uncover any outstanding issues with the system.

 Following this study, WiSAT will be deployed in a pre-clinical trial with third-party

research teams from the Hines Veterans Administration Hospital and the University of

Pittsburgh. Participants in this trial will use WiSAT in their daily routines over the course of

approximately six months. This trial will focus on the clinical effectiveness of WiSAT, as

measured by its acceptability, usability, and whether or not it impacts behavioral change.

Specific attention will be paid to the passive and active feedback of the WiSAT system during

this trial. Results will be used to further improve WiSAT.

 Finally, the end-goal for WiSAT is to be deployed as a commercial product. Recruitment

of firms to license and manufacture WiSAT is ongoing. Once an interested party is identified, the

system may be tailored to their specific needs easily thanks to the modularity and loose-

coupling employed throughout its design.

 Based upon the iteration of WiSAT produced by this thesis, a third, production-ready

version of WiSAT, “V3”, may be prepared. V3 will be produced in the context of information

learned from the second-stage usability study, the pre-clinical trial, and the specific

requirements of the commercial licensee. However, several steps may be taken to further

68

prepare WiSAT for deployment in a production environment. Additionally, optional features and

enhancements exist for each of the four subsystems.

5.1 Hardware Subsytem

Table 13 compares the current state of WiSAT’s hardware system with features that

may be added for V3. Many of the recommendations for V3 are based on lessons learned during

the course of this thesis. For example, the recommendation to use an established, real-time

operating system (RTOS) is based on past bugs and firmware issues uncovered during Specific

Aim 1. Introducing a real-time operating system will reduce the risk, complexity, and expense

associated with developing and maintaining custom, proprietary firmware to accomplish tasks

that are handled automatically by the RTOS. Further, using an established solution increases the

likelihood that solutions exist to any problems that may be encountered. If an appropriate RTOS

is selected, WiSAT will see improvements in multitasking, file system implementation, and

hardware communication.

In order to host a more computationally expensive features, such as an embedded

database and more advanced data pre-processing, a more powerful microcontroller is desirable.

One option would be to upgrade the current microcontroller from the Atmel SAM3S (Cortex-

M3) processer to a slightly more advanced one, such as the Atmel SAM4S (Cortex-M4). In this

scenario, additional RAM could be added to the board to support the minimum requirements

for the database and pre-processing algorithms. However, most, if not all, of the electronic

components on the existing board could be maintained.

A more extreme option would involve an overhaul of the existing hardware in favor of

implementing an inclusive system-on-module, such as the Qualcomm DART-SD410. This option

would utilize a more powerful microprocessor instead of a microcontroller and opens the

69

possibility of deploying a more advanced operating system, such as Android, Linux, or even

Windows.

An inductive charging module is currently planned for V3. This module will allow the

user to recharge the data logger wirelessly through their wheelchair cushion cover. This is

intended to increase WiSAT’s usability. In V2, the user is required to remove the logger from

their cushion entirely before charging via a micro-USB port. In V3, wireless charging will allow

the user to leave their hardware system in-tact while charging.

Table 13: WiSAT Hardware Technical Specifications

 V2 Specifications V3 Design requirements and/or

considerations

Logger Enclosure

Form factor Polycase KT-40 enclosure: 2 ¾ x 1

7/8 x ¾”

An attachment will be added to

the case to allow for the logger to

be paired with an inductive

charger.

Specific Form Factor choices may

vary based on the desires of the

licensee. However, smaller form

factor is, generally, more desirable.

Case Connectors Seat sensor mat and data logger

use Clincher 67516-208LF and

Clincher 95736-108LF

connectors.

An optional extension cable (“pig-

tail”) allows increased wire

length between the sensor mat

and the datalogger.

No Change

Electronic Components

70

Processor Microprocessor: Atmel SAM3S4B

(Cortex M3 family)

Random Access Memory (RAM):

On-Chip RAM provided with

SAM3S4B

A more powerful processor opens

up the possibility of improved data

storage options and more on-

board processing

Considerations: Atmel Sam4S,

Qualcomm DART-SD410

Battery life Two 3.7V 500 mAh Lithium-Ion

batteries in parallel (~75 hours)

Make/Model: Powerstream’s

GMB652535-PCB

An additional battery should be

added to power the real-time clock

separately.

Indicators and on-

off switch

V2 & V3 WiSAT includes on-off

switch & power indicator and data

indicator

No Change

Pressure Sensors Custom sensor mat made by

Tekscan. Sensor Mat contains six

force sensors on a flexible mat.

The mat includes cut-lines to allow

for users with cushions ranging

from 14.5” to 20” to use WiSAT.

No Change

Inductive Charger Not yet implemented An inductive charging module will

allow the user to charge the data

logger wirelessly through their

wheelchair cushion.

Data and Communication Protocols

Communication Bluetooth 4.0 Low-Energy (Telit

53330-02)

No Change

Data storage 8 GB SD Card to accommodate

situation when phone and user are

separated.

Flash Memory

71

Data

Access/Transmission

Data stored in flat files and

formatted as JavaScript Object

Notation (JSON)

Data stored in a local, embedded

database

Considerations: SQLite

On-board

processing

Currently does not calculate

occupancy on logger. This is

calculated in the app subsystem.

Occupancy and sensor drift on-

board

User management Instructions will be for user to

charge daily.

Mobile app can report battery

level of device

No Change

System Status System status (error states, battery

life, etc) are appended to each

batched JSON data file.

No Change

Firmware

Firmware Proprietary Gulf Coast Data

Concepts firmware

Established, real-time operating

system

Considerations: Zephyr Project,

FreeRTOS

5.2 App Subsystem

 After WiSAT completes all usability and pre-clinical studies, additional features may be

added to prepare the app for production. Depending on what information the licensee wishes to

add, additional security features may become necessary. In Version 2, no personally-identifiable

data or medical information is collected. However, if the licensee wishes to add more

personalization to the app or integrate it with systems which collect medical information, WiSAT

will need protection from outside attackers. Specifically, the licensee may choose to encrypt the

mobile database to prevent unauthorized access or tampering. The trade-off associated with

this is that it will make the data much more difficult to steal, but it will also make it very difficult

to recover if separated from the app for debugging purposes.

72

 Second, study findings may further refine WiSAT’s design and features. With the

introduction of new participants and many more hours of usage, new information may be

learned which affects the design used in V2. Because of the loose-coupling of the app’s

subsystems, changes may be made to the app without impacting the other subsystems. For

example, if icons or design elements on the UI are changed or re-arranged, the logger,

algorithms subsystem, and remote server will remain unaffected.

 As mentioned in Specific Aim 4, the app developer was instructed to process data and

manage Bluetooth connections and push notifications through background processes. This

introduced challenges due to background process restrictions on newer releases of Android.

Starting with Android 8.0, Android restricts certain kinds of background processing while the

app is idle [71]. This is done in an attempt to restrict developers from consuming excessive

smartphone resources without the user’s knowledge. Common workarounds include the use of

“foreground services”, which essentially use an overlay on the phone’s lock screen to make the

user aware of apps that utilize background processes. WiSAT collects and processes data at

regular intervals throughout the day, regardless of whether the user is actively using the app or

not. Therefore, the app developer was required to implement processes which relied upon

background processing through a combination of foreground services and other techniques to

maintain background processing throughout the time that the smartphone is turned on. As rules

and limitations regarding background services continue to evolve, WiSAT’s future licensee may

have to deploy updates or changes in this area of the app code.

 Last, WiSAT’s future licensee will face the choice of keeping WiSAT a primarily offline

app or introducing more remote server integration. As in V2, keeping WiSAT a primarily offline

system means that users may continue to use WiSAT regardless of their cellular data plan or

location. However, this comes with the added burden of processing all data locally within the

73

app subsystem. If more remote server integration were introduced, the algorithm subsystem

could be moved to the remote server, and the local database’s size could be greatly reduced.

For the user, this means that fewer system resources would be consumed (battery life, memory,

disk space), but the app would no longer be as up-to-date when they were without internet

access. As more consumers adopt data plans and coverage increases, however, this may

become less and less of a concern as time passes. Ultimately, the licensee must decide whether

this is a trade-off they are willing to make.

5.3 Algorithm Subsystem

 In the algorithm subsystem, future work could include expanded data validation.

Currently, the algorithm subsystem includes an “Algorithm Exception” Class. This class is

intended as a parent class to the various error states that the algorithms may detect. For

example, the algorithm subsystem throws an exception if it receives raw data out of

chronological order (i.e. the most recent data point is older than the previous one). However,

many other opportunities exist for automated error-detection from within the algorithm

subsystem. For example, it may be possible to implement a feature which automatically detects

when the user should be prompted to redo their setup and initialization if their system ever falls

out of calibration. A sub-class could be created that inherits from AlgorithmException. Since the

app already catches all exceptions of type AlgorithmException, this would automatically be

picked up by the application layer and would be logged to the database. Additional updates to

the application code could introduce more custom behavior, such as custom prompts to

encourage the user to redo their initialization.

 A second area of improvement for the algorithm subsystem lies with introducing new

algorithm updates based on findings from data collected from research study participants and

74

early adopters of the WiSAT system. As more data is collected, the opportunity exists to further

tune the classification algorithms to further improve their accuracy. Because the algorithm

subsystem was built as a separate module from the rest of the app, any changes made to the

algorithms can be deployed without altering other areas of the application code.

5.4 Remote Subsystem

If the future licensee wishes to use some version of the remote server subsystem,

WiSAT’s V2 API will need updated security features before it is ready for production. While

WiSAT is still in pre-clinical studies, the risk of unauthorized individuals posting or retrieving data

is minimal. Compared to a production-ready, commercial system, a system which is deployed

among fewer than one-hundred users for a period of less than a year is unlikely to be infiltrated.

Additionally, in the unlikely event that this did happen, no personally-identifiable information,

healthcare data, or other sensitive information is collected by the system. However, for a

production-ready product, implementing this added security is a best-practice. As the number of

users increase, the risk of unauthorized access increases, and the difficulty and expense of

resolving a security breach also increases.

Currently, the remote server subsystem relies upon a single access key to authenticate

incoming data and requests. All instances of the WiSAT app utilize this same access key. If this

access key were to be leaked, fake data could be sent on behalf of any user in the system.

Further, if this access key needed to be changed, all users would be impacted. Several trusted

and reliable authorization strategies exist in the industry, but the specific choice for WiSAT will

depend upon a variety of factors dependent upon the specific use-case of the remote server

which the licensee desires. Regardless of which specific approach is selected, the goal of the

selected authorization scheme is two-fold . First, it must to minimize the risk of unauthorized

75

users sending or receiving data from the remote server subsystem. Second it should reduce the

ability for a data breach of one user’s account to impact another user.

--

Through the preparation of WiSAT V2, many lessons were learned about transitioning a

research tool into a consumer product. In Specific Aim 1, this thesis built upon prior work and a

controlled UI evaluation to design an effective, usable interface. Specific Aim 2 coupled the

algorithm and app subsystem through an API with two modes of operation for specific scenarios

within the lifecycle of WiSAT. The algorithm library was translated into object-oriented

languages and prepared for use in a smartphone app through Specific Aim 3. Last, Specific Aim 4

tied the four subsystems together around the smartphone app subsystem. Going forward,

WiSAT is prepared for its next steps towards becoming a production-ready consumer product.

76

APPENDIX A: WISAT INITIALIZATION SCREENS

77

78

79

APPENDIX B: ALTERNATE WISAT DESIGNS
B.1: Design A

Home Day Week

Month

80

B.2: Design B

Month

Home
Day Week

81

APPENDIX C: UI EVALUATION

C.1 Participant Engagement Plan

 Task Approximate Duration
(minutes)

1. Introduction: The participant is provided a brief background on
the mobile application and asked to sign a consent form if they
agree to participate in the study. If they do not consent, the
other steps in this list are not taken.

5

2. The participant will be asked to perform a series of tasks
representing three areas of app functionality: settings,
information and activity goal status. The task series is listed in
Appendix B. Two UI versions are being evaluated that differ in
data presentation. The order of versions presented for
evaluation will be randomized

45

3. Survey: The participant will be asked to complete a survey
(Appendix C) regarding their experience with the prototype
app.

25

4. Wrap-up: The participant will be asked if they have any further
comments or questions and thanked for their time. A $30 gift
card will be printed or emailed to the participant as a thank-
you for their time.

5

82

C.2 Participant Engagement Plan

Randomly select whether Version A or Version B is presented first

Version A and B differ in Home Screen and Detail screens only

1. From the Home screen
1. Go to the Information page. Go to the information about battery charging
2. Read information and comment: was it clear? Do you understand how you

would charge the battery?
3. Return to the Home Screen

2. From the home screen:
1. Go to the screen for weight shifts. In which hours did the user meet the weight

shift goal?
2. Navigate to a screen that shows weight shift statistics for the month. How many

times did this user miss their goals in the past month?
3. Return to the Home screen

3. From the Home screen
1. Go to the In-Seat Movement (ISM) Score screen. Check the ISM Score status for

the day. Comment on the ISM Score with respect to the goal
2. Navigate to the Weekly information. In how many days was the ISM goal met

for the week?
3. Return to the home screen

4. From the home screen:
1. Go to settings page. Go to the setting a goal page

2. Set an ISM Score goal of 80 per hour

3. Return to home screen

Repeat for 2nd version

1. From the Home screen
1. Go to the Information page. Go to the information about Pressure Ulcers.
2. Read information on screen 1 and comment. Was it clear? Do you understand

the information on pressure ulcers? How could this be made clearer?

3. Return to the Home Screen
2. From the home screen:

1. Go to the screen for weight shifts. In which hours did the user meet the weight
shift goal?

2. Navigate to a screen that shows weight shift statistics for the month. How many

times did this user miss their goals in the past month?
3. Return to the Home screen

3. From the Home screen

1. Go to the ISM Score screen. Check the ISM Score status for the day. Comment

on the ISM Score with respect to the goal.

2. Navigate to the Weekly information. In how many days was the ISM goal met for

the week?

3. Return to the home screen
4. From the home screen:

1. Go to settings page. Go to the setting a goal page

83

2. Set a goal to perform 3 weight shifts per hour

3. Return to home screen

Side by side comparison: Home Screen A and Home Screen B

84

APPENDIX D: SUMI QUESTIONNAIRE – MODIFIED FOR WISAT

 Question Answer Choices

Subscale A: Affect

1 Working with this software is satisfying. Agree, Undecided,
Disagree

2 The way that system information is presented is
clear and understandable

Agree, Undecided,
Disagree

3 Working with this software is mentally stimulating Agree, Undecided,
Disagree

4 There is never enough information on the screen
when it’s needed

Agree, Undecided,
Disagree

5 I feel in command of this software when I am using
it.

Agree, Undecided,
Disagree

6 I prefer to stick to the facilities that I know best. Agree, Undecided,
Disagree

Subscale B: Helpfulness

1 I think this software is inconsistent Agree, Undecided,
Disagree

2 I would not like to use this software every day Agree, Undecided,
Disagree

3 I can understand and act on the information
provided by this software.

Agree, Undecided,
Disagree

4 This software is awkward when I want to do
something which is not standard.

Agree, Undecided,
Disagree

5 There is too much to read before you can use the
software.

Agree, Undecided,
Disagree

6 Tasks can be performed in a straightforward
manner using this software

Agree, Undecided,
Disagree

7 Using this software is frustrating Agree, Undecided,
Disagree

8 The software has helped me overcome any
problems I have had in using it.

Agree, Undecided,
Disagree

9 I keep having to go back to look at the guides. Agree, Undecided,
Disagree

Subscale C: Control

1 It is obvious that user needs have been fully taken
into consideration.

Agree, Undecided,
Disagree

2 There have been times in using this software when
I have felt quite tense.

Agree, Undecided,
Disagree

3 The organization of the menus or information lists
seems quite logical

Agree, Undecided,
Disagree

4 The software allows the user to be economic of
keystrokes.

Agree, Undecided,
Disagree

5 There are too many steps required to get
something to work

Agree, Undecided,
Disagree

85

6 It is easy to make the software do exactly what you
want

Agree, Undecided,
Disagree

7 I will never learn to use all that is offered in this
software.

Agree, Undecided,
Disagree

Subscale D: Learnability

1 The software has a very attractive presentation. Agree, Undecided,
Disagree

2 Either the amount or quality of the help
information varies across the system.

Agree, Undecided,
Disagree

3 It is relatively easy to move from one part of a task
to another.

Agree, Undecided,
Disagree

4 It is easy to forget how to do things with this
software

Agree, Undecided,
Disagree

5 This software is really very awkward. Agree, Undecided,
Disagree

6 It is easy to see at a glance what the options are at
each stage

Agree, Undecided,
Disagree

7 I have to look for assistance most times when I use
this software

Agree, Undecided,
Disagree

Addendum

1 How important for you is the kind of software you
have just been rating?

Extremely important

Important

Not very important

Not important at all

2 How would you rate your software skills and
knowledge?

Very experienced and
technical

I'm experienced but not
technical

I can cope with most
software

I find most software
difficult to use

 What do you think is the best aspect of this
software and why?

[Open-Ended]

 What do you think needs the most improvement
and why?

[Open-Ended]

86

APPENDIX E: QUALITY ASSURANCE

E.1 Hardware Quality Assurance Protocol

To be repeated for each logger that is shipped to the REAR Lab. Values in red may need to be

changed in the future.

1. Physical Inspection

o The logger should respond to the power button on the faceplate. Faceplate

lights should blink as the power button is held.

o Batteries: Two GMB652535 batteries should be wired in parallel

o Faceplate Connector: Please replace faceplate connector if it’s loose or broken

free from the surface mounts

2. Resistor Inspection (Enclosure must be opened)

o R79 should be 105kOhms.

3. Firmware Evaluation

o Plug the datalogger into a computer. Wait for it to mount (i.e. for the

computer’s operating system to recognize that it has been attached). It should

take less than one minute for this to happen. If this takes longer, contact the

hardware vendor. On a Windows computer, you will see a message like this

when the logger mounts:

o The data logger behaves like a flash drive. On a Windows machine, it will map to

a letter drive (I: , E: , etc). Open it as you would a flash drive.

o Upon opening, you should see the following:

87

o Open config.txt with Notepad++.

 Verify that the samplesperfile are set to 480 (2 minutes)

 Verify that adc_sampleinterval = 250

 Verify that stoponVusb and lowPowerOnVusb are present and

uncommented. (Comments are semicolons (;) in the config file. If either

are preceded by a semi-colon, they are commented out.)

 Verify that rebootOnDisconnect is present and not commented out:

 If necessary, sample config files are available at R:\PressureReliefs\DOD

WiSAT project\Data\Data Dumps. Select a config file from the last

known working logger.

o Open the READY directory and sort by Name. Verify that the most recent file

(i.e. the one with the highest number) has not been reset to the year 2006 or

2007 nor has it been forwarded to a future date.

 If the date looks off, you will need to reset it by pairing with the

Realtime app

o In the most recent file, check in the “Status” line for the firmware version. It

should show the up-to-date version.

o If that’s not the case, Either 1) Flash the new firmware (refer to Readme.txt in

R:\PressureReliefs\DOD WiSAT project\Hardware\Gulf Coast Source Code) or 2)

Contact GCDC

o Safely eject the logger from your computer

o Unplug the logger

4. Bluetooth Evaluation

o Attach a sensor mat to the logger

o Turn the logger on (if it is off) by pressing the power button on the faceplate.

o Give it a few seconds to “warm up”.

88

o Use a testing app or the REARLab’s “realtime” WiSAT app to start streaming on

the logger.

 Note: the Bluetooth connection may waver while testing. Be sure to

attempt multiple times if the connection is lost while streaming or

sending batched data.

 App instructions are separate from these steps. Source code and

instructions live at: https://github.gatech.edu/RearLab/wisat

 Note: If you get a 404 error, you will need to be added to the

repository. Email rearlab@design.gatech.edu for this.

o Apply force to each of the mat’s sensors while streaming and confirm that the

app receives incoming data in a timely manner.

o Stop streaming

 Note: this is down automatically in the realtime app by requesting a

batch file

o Request a Batch File. Wait for it to be transmitted in its entirety.

 This can take upwards of 1 minute to complete. The status light should

blink more rapidly than normal while this transfer is taking place. If this

rapid blinking stops before the file transfer is complete, or the transfer

takes longer than one minute, it may be necessary to repair the logger

and app and try again.

o After verifying the receipt of the batch file, let the logger continue to log data

for 2 minutes. Afterwards, proceed to data validation

5. Data Validation

o Using the sub-steps from Step 3, attach the logger to the computer and open

the READY folder. Sort by Name.

o The highest file number should be dated to the time you took data in step 4. As

of Feb 2019, the app should have forced the logger to record data in the GMT+0

timezone.

o Move to one folder above READY. Find the folder named BYYMMDD, where

YYMMDD is the current year, month, and day.

Confirm that the batch file from Step 4 made it to this destination

E.2 Capacity Test Protocol

Filegen.bat generates fake WiSAT data to load test the datalogger. Edit it with Notepad++ or

your favorite text editor. Assign the number of files you wish to generate to the “count” variable

Use the filesizeInKB variable to assign a filesize (2 minute batch files = 38kb). To run:

1. Place the filegen batch file in the datalogger's READY folder.

2. Open a command prompt with admin privileges

3. Type E: (or whatever the datalogger's drive letter is)

4. If the command prompt does not show you in the READY folder, cd to the READY folder

(i.e. "cd .\READY")

5. Run filegen.bat by typing "filegen.bat" in the command prompt and hitting enter.

https://github.gatech.edu/RearLab/wisat
mailto:rearlab@design.gatech.edu

89

Method (original):

1. Fill Logger to capacity using filegen.bat

2. Remove files gradually until logger becomes performant again. As it nears capacity, the

logger may experience symptoms such as slow file save times and suspended Bluetooth

communication. Once these symptoms cease, the logger is considered performant.

3. Verify that both Bluetooth streaming and writing to the SD Card function properly

4. Record total file count and total hard drive space used at which logger becomes

functional

Method (updated):

If the logger is brought to a state where it experiences file system delays due to capacity issues,

the file system will not necessarily correct itself after files are deleted. This means that the best

way to test this issue may be to slowly increase the number of files present on the logger rather

than max out the number of files on the logger and slowly decrease files.

1. Decide capacity benchmarks before running the test. (For example, 5,000 file, 10,000

files, 20,000 files, etc).

2. Start with the lowest number of files you wish to examine

3. Configure filegen.bat file to create the desired number of files

4. Run filegen.bat to completion

5. Verify that both Bluetooth streaming and writing to the SD Card function properly.

Record the amount of delay that is experienced at the end of each batch.

a. This can be measured by streaming data via Bluetooth in realtime and by

comparing timestamps from the beginning and end of each file.

6. Continue testing with every desired benchmark

90

APPENDIX F: INITIAL SYSTEM REQUIREMENTS LIST
I. Data Flow

A. Transmitted by Data Logger Mobile Application

1. Hardware Status: Battery Life

2. Initialization Success: Confirmation of the receipt of initialization data

parameters

3. Sensor Data/Time: A JSON object containing 6 integer values (sensor

data) and a timestamp. One or two additional fields may be added if

deemed necessary. The data logger collects data at a rate of 4 Hertz.

B. Transmitted by Mobile Application to Data Logger

1. Initialization Data Parameters: values that allow the data logger to

perform an initialization calculation

2. Bluetooth connection: Connection to data logger and mobile phone

Bluetooth chips

3. Request to Send Data: A request for #A3 above

4. Confirmation of Receipt of Data: a confirmation of the receipt of #A3

C. Transmitted by Mobile Application to Remote Server

1. Errors: Errors and Exceptions that result in the loss of any data or

interfere with the display of any UI elements shall be sent to a provided

Georgia Tech RESTful API Endpoint when an internet connection is

available. When offline, the application shall log errors to be sent once

the application becomes online again.

2. Data Transmission: Twice daily, the application shall transmit all

unsynced data to a second, provided Georgia Tech RESTful API Endpoint

if online. If offline at the scheduled sync time, the application shall do

nothing.

3. Manual Data Transmission: As a backup to the automatic data

transmission, a button in the settings page shall send the Realm

database to a Georgia Tech server when pressed.

D. Overview: A data logger will record data from a pressure sensor mat regarding

the user's sitting position at a rate of 1 to 4 Hertz. The data logger will save the

sensor data to an internal database and transmit it, upon request, to the mobile

application. The data transfer rate between the data logger and the mobile

application is yet to be determined, but we expect it to be around once every

minute or so.

II. User-Interface

A. Subject ID Prompt Screen: Prompt the researcher to input an alphanumeric

subject identifier and other clinical variables upon first use.

B. Initialization: Prompt the user to provide initialization data on their first use of

the system.

C. Bluetooth Connection Pop-Over Window

D. Settings: User-configurable settings screen

E. Medical Information screens: static screens displaying medical information

about pressure ulcers and their treatment

91

F. Notifications: Ongoing research will determine the best format(s) of the

notifications to display to the user.

1. Active Notifications: Display reminders to the user regardless of phone

sleep status if the processed sensor data indicates noncompliance with

pressure relief goals. We prefer these to take the form of offline-only

notifications but are willing to utilize Push Notifications/Firebase-based

notifications (in the case of Android devices) if they are determined to

be the best option.

2. Passive Notifications: UI screens containing visualizations detailing the

user’s past performance on the three metrics

III. Settings Options

A. Goals

1. Customizable pressure relief goals to fall within a predetermined range

of values

B. Alert Options

1. Push Notification On/Off

C. Clinical

1. Weight

2. User ID

3. Cushion Type

D. Initialization Setup

1. Option to trigger an initialization to gather updated baseline data.

IV. Database: Local-only, Realm database

V. Error-Logging: Relevant errors/exceptions (as determined by REAR Lab in

consultation with the vendor) shall be displayed to the user. All errors/exceptions

shall be saved to the database.

VI. Clinical Metrics: The mobile application shall track three primary metrics

A. Weight Shifts (algorithm to be provided)

B. Time between movements (time since last weight shift)

C. In-Seat Movement Score: a measure of the frequency of fidgeting that occurs

throughout the day (algorithm to be provided)

VII. Usage monitoring:

A. Log how frequently the application is opened.

B. Log how frequently individual screens are opened.

VIII. Application Updates

A. As a research tool, the REAR Lab will manage the distribution of APK and IPA

files to the user base until the WiSAT system completes clinical trials. No

commercial sale on the Google Play Store or Apple App Store is required at this

time.

92

APPENDIX G: TEST CASES

Epic
Task Happy Path Test

Case
Edge Cases Platforms

D
at

ab
as

e
Sc

h
em

a

Create a database schema
that stores raw data,
initialization data, Weight
Shift (raw count and time
between), In-Seat
Movement score (activity
score), Device
Information, User
Information, and Error
Logs

Export the database
contents to a
format that can be
viewed outside the
app. Verify that all
tables and columns
appear as specified
in the schema with
correct datatypes.

N/A Realm
Database

D
at

al
o

gg
er

 C
o

m
m

u
n

ic
at

io
n

Create an Application
Program Interface (API)
that allows for
communication between
the datalogger and app.
The API should allow the
app to initiate data
transfer.

The API should
function as
documented (see
tasks below for
more details)

N/A Datalogger

The API should include a
"streaming" command to
transmit sensor data from
the datalogger to the app
in realtime.

A "start streaming"
command sent from
an app should result
in sensor data being
returned in
realtime. A "stop
streaming"
command should
stop this

Test sending
commands out of
order (stop
before start)

Datalogger

The API should include a
command to request
batched files from the
datalogger

When this
command is issued,
the batch files
should be streamed
to the datalogger in
order of oldest to
newest.

Test Issuing this
command
multiple times
before
completing an
individual file

Datalogger

93

The datalogger should
archive transmitted
batches in its file system
according to the date in
which the batched data
was taken.

After receiving a
batch file, issue this
command to let the
data logger know
that the file has
been processed.
The received file
should appear in
the datalogger's
filesystem in a
BACKUP directory
named according to
the date in which
the data was taken.

Try issuing this
command
without receiving
a file first. Try
issuing it multiple
times for the
same file.

Datalogger

Timestamps should be
transmitted accurately in
UNIX timestamp format

When requesting
data in either
batched or
streamed formats,
timestamps should
be attached to each
datapoint that
accurately
represent the UNIX
time in which the
data was taken.

Datalogger

Mobile app should
properly receive and store
UNIX timestamp.

The mobile app
should recognize
the UNIX timestamp
format and save this
time internally. It
should only convert
to local time when
displaying times to
the user.

Mobile

The datalogger should
transmit battery life and
hardware status upon
request

Request a batched
file. The file should
contain this
information in the
header

Datalogger

The datalogger should
allow the mobile app to
reset its timestamp

Sending this
command should
immediately update
the time in the
logger

Datalogger

94

The mobile app should
reset the datalogger
timestamp hourly to avoid
timing issues.

Run the app for a
period of several
hours. Afterwards,
review the app's log
files. There should
be a record of an
updated timestamp
being sent to the
logger in UNIX time
every hour.

Mobile (both
platforms)

The mobile app shall start
streaming mode before
each of the desired
initialization shifts and end
it as each initialization
shift is complete. It shall
store the raw data
internally and keep a
record of the start and
endtime of each shift.

Run through the
initialization
sequence in the
mobile app.
Afterwards, export
the database. The
raw data along with
start/stop times for
each of the
initialization leans
should be present in
the database

Force the data
logger to crash
while attempting
initialization. See
if the app
responds
gracefully or not.

Mobile (both
platforms)

The mobile app shall
request batched data
during its normal
operation (i.e. when not in
initialization mode)

Run the app for a
period of one hour
with any screen
open besides the
initialization
screens. Export the
database. The
database should
contain raw data
from batch files
requested from the
logger. Examine the
app's logs to verify
that batch requests
(and receipt
acknowledgements)
were sent

Try this on
multiple screens

Mobile (both
platforms)

The mobile app shall
request batched data even
when it is in the
background or the phone
is "asleep"

Repeat the above
test case for 5 hours
with the app in the
background of the
phone. Raw data
should show that
batched data was
received while the
app was in the

Mobile (both
platforms)

95

background and
while the phone
was asleep.

The mobile app shall
contain a bluetooth
connection screen as part
of the first time setup

Progress through
this screen as part
of the first-time
setup. With a logger
running nearby the
phone, attempt to
connect to the
logger. The logger
should connect
successfully, and
the app should
progress to a screen
indicating a
successful
connection. Export
the database.
Ensure that the
connection history
was logged

Try connecting
the app to the
same logger
multiple times.
Ensure that the
logger does not
need to be power
cycled to
reconnect with
the app.

Mobile and
Datalogger

The mobile app shall alert
the user if the Bluetooth
connection failed during
setup

Repeat the above
test case, but force
the connection to
fail by keeping the
logger powered off.
The app should
display a screen
indicating that the
connection failed.
Export the database
and confirm that
this was logged

Repeat this, but
cause the app to
be the source of
failure. Ensure
that the logger
handles this
gracefully.

Mobile and
Datalogger

U
se

r-
In

te
rf

ac
e

The mobile app shall
contain a home screen
that displays Weight Shift
Count, Time Between
Weight Shifts, and In-Seat
Movement score

Export the database
of an app that has
already collected
data on the three
metrics. Confirm
that the home
screen reflects the
data seen in the
database

Try reinitializing
and changing
goals to see if this
impacts the data
displayed on the
various screens.

Mobile (both
platforms)

96

The Weight Shift Screen
shall show daily data

Confirm that the UI
for the screen
matches the
prototype
specifications and
the exported
database table

Mobile (both
platforms)

The Weight Shift Screen
shall show weekly data

Confirm that the UI
for the screen
matches the
prototype
specifications and
the exported
database table

Mobile (both
platforms)

The Weight Shift Screen
shall show monthly data

Confirm that the UI
for the screen
matches the
prototype
specifications and
the exported
database table

Mobile (both
platforms)

The In-Seat Movement
Screen shall show daily
data

Confirm that the UI
for the screen
matches the
prototype
specifications and
the exported
database table

Mobile (both
platforms)

The In-Seat Movement
Screen shall show weekly
data

Confirm that the UI
for the screen
matches the
prototype
specifications and
the exported
database table

Mobile (both
platforms)

The In-Seat Movement
Screen shall show monthly
data

Confirm that the UI
for the screen
matches the
prototype
specifications and
the exported
database table

Mobile (both
platforms)

The Contact screen shall
display the contact
information of
appropriate research
personnel

Confirm that the UI
displays accurate
information and
matches the

Mobile (both
platforms)

97

prototype
specification

The Information and
Training section of the app
shall appear as seen in the
prototype specification

Confirm that the UI
matches the
prototype
specification

Mobile (both
platforms)

The Settings screen shall
allow the user to set goals,
reinitialize, reconnect
bluetooth, and activate
notifications

Confirm that the UI
matches the
prototype
specification

Mobile (both
platforms)

Goal Setting shall allow
the user to set Weight
Shifts per hour, Max Time
between Shifts, and In-
Seat Movement per hour.

Confirm that the UI
matches the
prototype
specification.
Change each goal at
least twice. Export
the database.
Confirm that the
database reflects
your changes

Mobile (both
platforms)

The option to Reconnect
bluetooth shall return you
to the Connect Bluetooth
dialog from the
initialization/setup
screens

Confirm that this is
functional

Mobile (both
platforms)

The reinitialization option
shall return the user to the
initialization screens

Confirm that this is
functional

Mobile (both
platforms)

The Activate Notifications
feature shall prompt the
user to enter a code to
toggle the
IsUsingActiveNotifications
column

Enter the correct
code. Export the
database. The
database should
show that
notifications are
enabled

Attempt this with
incorrect code

Mobile (both
platforms)

When the app is launched
for the first time after
installation, the first
screen to appear shall
prompt the user to input
their setup information

Confirm that the UI
matches the
prototype
specification.Export
the database.
Confirm that the
database reflects
your entered data.

Try entering
invalid characters
(i.e. strings in
number fields,
etc)

Mobile (both
platforms)

98

As part of setup, the user
should be prompted to
enter calibration data

Confirm that the UI
matches the
prototype
specification.Export
the database.
Confirm that the
database reflects
your entered data.

Try entering
invalid characters

Mobile (both
platforms)

Initialization screens shall
appear at the end of the
setup. These screens shall
instruct the user to sit in
their normal posture and
to perform three
consecutive weight shifts

Confirm that the UI
matches the
prototype
specification.

 Mobile (both
platforms)

Minimum screen size
should be 1136x640
(iPhone 5) and 320dp
(Android)

Load the UI onto a
variety of screen
sizes and confirm
that the UI loads
without scrolling

Play with
accessibility
settings on the
phone. See if this
breaks the UI.

Mobile (both
platforms)

Screens should progress as
described through the
Adobe XD prototype

Confirm that the UI
matches the
prototype
specification

Rage click on
various screens.
See if you can
force a crash.

Mobile (both
platforms)

R
e

m
o

te
 S

er
ve

r
C

o
m

m
u

n
ic

at
io

n

Implement a Series of
RESTful API Endpoints that
allow the mobile app to
POST data from the
following tables:
RepoParticipant,
RepoGoal, RepoErrorLog,
RepoDevice,
ConnectionHistory,
WeightShiftHistory,
ActivityHistory,
InSeatHistory,
MonthArchive

For each endpoint,
ensure that the
request body allows
us to POST data
with each of the
attributes of its
respective table. A
200 OK response
should be returned.
The response body
should contain the
same data as the
request body

Attempt sending
data while
ignoring nullable
fields. Ensure that
200 OK is
returned

Remote
Server

Mobile app should only
attempt communication
with remote server when
connected to a WiFi
network

Run the app with
the WiFi feature
turned off. No data
should be sent
during this time

Mobile (both
platforms)

Mobile app should send
data at least twice a day
when connected to a WiFi
network

Run the app with a
WiFi connection for
a day. All endpoints
should be updated
at least twice

Mobile (both
platforms)

99

A
lg

o
ri

th
m

 C
o

m
m

u
n

ic
at

io
n

An Initialization Algorithm
should take in a list of raw
sensor data for the normal
posture and three weight
shifts and return the
values in the
ScalingFactors table

This algorithm is
based on earlier
work in Matlab. Run
the algorithm in
isolation from the
rest of the app. Pass
in initialization data
to the algorithm.
The algorithm
should return the
same scaling factor
data as its
counterpart in
Matlab.

Set breakpoints
inside the
algorithm code
and ensure that
each sub-step
aligns with the
Matlab code

Java/Swift

A classifier algorithm
should take in raw data
and scaling factors and
return data for
WeightShifts, In-Seat
Movement, and In-Seat
History

Same as
initialization
algorithm

Same as
initialization
algorithm

Java/Swift

A calibration method
should apply calibration to
raw sensor data

Same as
initialization
algorithm

Same as
initialization
algorithm

Java/Swift

Er
ro

r
Lo

gg
in

g

Lost Bluetooth
Connections should be
logged to the database

Drop the bluetooth
connection
intentionally. Export
the database.
Confirm that the
dropped connection
was logged

Mobile (both
platforms)

When the logger refuses
to send batched or
streamed data, this error
should be logged

Simulate this with
the datalogger.
Export the
database. Confirm
that the dropped
connection was
logged

Mobile (both
platforms)

An error shall be logged
when the WiSAT battery
drops below 3600mv

Simulate this with
the datalogger.
Export the
database. Confirm
that the dropped
connection was
logged

Mobile (both
platforms)

100

Unhandled Exceptions
should be logged

Simulate this with in
the source code
(perhaps with a
"throw new
Exception"). Export
the database.
Confirm that the
dropped connection
was logged

Mobile (both
platforms)

Algorithm Errors Trigger an algorithm
error manually
(possibly by passing
in data out of
order). Export the
database. Confirm
that the dropped
connection was
logged

Mobile (both
platforms)

A
p

p
 L

if
ec

yc
le

Day 1 shall prompt the
user for setup and
initialization

On a fresh
installation of the
app, confirm that
the setup and
initialization screens
appear as specified
in the prototype
specifications

Mobile (both
platforms)

Day 1 to 14 shall present
the "Lock Mode" screen as
specified in the prototype

After completing an
initialization on a
fresh installation of
the app, the app
should display the
Lock Mode screen

Mobile (both
platforms)

Day 1 to 14 shall collect
data in batched mode, as
usual

After seeing the
Lock Mode screen,
leave the phone
running within
range of the
datalogger for an
hour. Export the
database. Confirm
that raw data from
batched file taking
during the hour
exist in the
database

Mobile (both
platforms)

101

Day 14 to Day 149 shall
allow the user to interact
with WiSAT in normal
operating mode

Download a fresh
installation of the
app. On the setup
screen, set the trial
start date as 30
days in the past.
The Lock Mode
screen should no
longer be visible.
Instead, the home
screen should
appear

Mobile (both
platforms)

Day 149 and beyond
should display an "end of
study" screen

Repeat the test case
for Days 14-149 but
set the start date to
150 days in the
past. The home
screen should no
longer appear, but
the Completion
Screen should
appear as seen in
the prototype
specifications

Mobile (both
platforms)

N
o

ti
fi

ca
ti

o
n

s

Use the JITAI Framework
to determine when Push
Notifications should be
issued to remind users of
their goals

Run the app with
for a day without
making any
progress towards
goals. The app
should receive push
notifications

Try this while the
app is offline to
ensure that it is
functioning

Mobile (both
platforms)

Alert user if the WiSAT
Module and the
smartphone app have
been unable to reconnect
after 5 or more attempts

Connect the app
and the data logger.
Disable the
datalogger's
bluetooth
communication.
The app should
alert the user in a
minute or two.

Mobile (both
platforms)

Alert the user if the WiSAT
battery drops below
3600mv

Connect the app to
a data logger with a
low battery
(~3700mv). Wait for
the battery to drop
to 3600mv. The app
should alert the
user

Mobile (both
platforms)

102

If an unhandled exception
is encountered, the app
should alert the user and
provide them a code to
give to the research team

Manually trigger an
exception. Verify
that the app has
alerted the user
with a code

Mobile (both
platforms)

A
p

p
 D

is
tr

ib
u

ti
o

n
 The app should be able to

be installed on both iOS
and Android platforms
without any research
team intervention

Install the app on a
device through the
chosen distribution
platform

Try this for
multiple devices

Mobile (both
platforms)

B
at

te
ry

 E
va

lu
at

io
n

Find a battery with the
greatest capacity that fits
inside the datalogger case
without overheating

Fully charge each
potential battery
candidate. Run a
WiSAT logger with
the battery inside
until the logger
drains completely.
Use the batch file
headers to create a
battery discharge
curve. Select the
battery with the
longest lifespan

Datalogger

In
d

u
ct

iv
e

C
h

ar
ge

r
Ev

al
u

at
io

n

Find a 5W or lower
inductive charger that can
charge WiSAT overnight
through Seat Cushions

Charge WiSAT with
various inductive
charger transmitter
and receiver
combinations.
Record the final
temperatures after
charging for 30
minutes or more.
Attempt to reduce
temperature with
spacer fabric and
manipulating
magnetic fasteners.
Select the
receiver/transmitter
combination that
allows for the
fastest charge time
without a
dangerous
temperature

Datalogger

103

D
at

al
o

gg
er

 C
ap

ac
it

y

The datalogger shall be
able to store 6 months or
more of WiSAT sensor
data taken at 4Hz

Simulate 6 months
of Sensor data on
the logger. Monitor
performance and
response times.
Ensure that the
Bluetooth module
still functions as
expected, and that
data is logged
without any lost
datapoints.

Datalogger

104

APPENDIX H: UI EVALUATION RESULTS

H.1 General, Open-Ended Comments from UI Evaluation Participants

about WiSAT

Participants Notes

Screen 01 • Battery icon might be confused with the phone’s battery icon

Screen 02
• Wants to see in-seat movement/weight shift info filled out
• Commented on Phone icon and asked if there were people he could call

Screen 03

• Goal setting: wants a number with a +/- or an up/down arrow
• Says she thinks that folks with limited dexterity would appreciate this
• Having the slider stop on tick marks would be a compromise, though

Screen 04

• Buttons are big and straightforward
• Pretty straightforward overall
• Got all the information
• Wanted contact numbers/maintenance line

Screen 05

• Problem with set time: thinks having a rigid time schedule might mean that
the notification may come too late for the user to do anything about it
• Thinks the app is great
• All information is in both, but he likes A better overall

Screen 06

• Asked about sliding functionality => part of the prototype, not the app
• When he got to the wireless charging screen, he mentioned that he liked that
idea for its convenience
• “Pretty easy to navigate through”

Screen 07

• Graphs: “Reminds me of the Push Tracker app”. This app apparently
measures the manual vs coasting movement of wheelchairs. “Can’t honestly
say I’ve utilized it”. It can track how much you are exercising your arms
• Likes the visual of the colors and the ability to scroll back in time and see
what goes where next.
• Excited for WiSAT: asked when it would be available to the public
• Likened it to fitbit
• “Nagging mother app”

Screen 08
• “Easy to use”
• Hard to find settings on his own apps, but “this one’s real easy”

Screen 09

• Asked what re-initialization was
• App Seems simple enough
• “Not too difficult for any non-app user to try and figure it out”

Screen 10

• Referring to the app as a whole” “I think it’s a good idea. Definitely
something needed in the disability community.”
• Likes how interactive it is. Likes how things are clickable. Used max time
between shifts as an example.

105

H.2 Summary of Open-Ended SUMI Results

Subject What do you think is the best aspect
of this software and why?

What do you think needs the most
improvement and why?

1 Data displays – easy to read; quick to
look at day, week, month

Clarify in-seat movement score – avoid
arbitrary number. Maybe percentage of
day. Make it easier to understand

2 I think the Activity points will be the
best. It is something that you can use
to measure how much work you are
doing. You can gauge physical activity
easily and understand the
information.

Everything was good. Things that are
unfinished need the most improvement

3 The breakdown in numbers. It is
similar to the apple watch. You can
see as much as you want or as little
when it comes to your movement.
For someone who really struggles
with pressure sores, this is great!

Readability and wording. Add numbers to
the graph and change the wording of the
categories and it will be great!

4 Helps me make health decisions.
Simple user interface allows for
efficient interactions. Information
modeled clearly.

Goal setting needs to be more free-form

5 The amount of information Maybe an option that allows you to
examine where you’re shifting your weight
and for how would be helpful and open
your product to other applications such as
sports

6 Letting the user know they have
missed a weight shift

The wording on pressure ulcer vs pressure
sore

7 Awareness Modular information for other application
or sub components. Better Posture

8 Easily Organized Sometimes it took me a while to go
through it because I’m not very functional
at the end of the day

9 Software seems very user friendly for
all skill levels and can give the
information needed without
confusing the user left blank

10 Can't read handwriting Charging it would be hard to get home and
remember

106

H.3 SUMI Addendum Responses

How important for
you is the kind of
software you have
just been rating?
1 (lowest) – 4
(highest)

How would you
rate your
software skills
and knowledge?
1 (lowest) to 4
(higest)

What do you think is
the best aspect of this
software and why?

What do you think
needs the most
improvement and
why?

2 2 Data displays – easy to
read; quick to look at
day, week, month

Clarify in-seat
movement score –
avoid arbitrary number
.Maybe percentage of
day. Make it easier to
understand

2 3 I think the Activity
points will be the best.
It is something that you
can use to measure
how much work you
are doing. You can
gauge physical activity
easily and understand
the information.

Everything was good.
Things that are
unfinished need the
most improvement

2 2 The breakdown in
numbers. It is similar to
the apple watch. You
can see as much as you
want or as little when it
comes to your
movement. For
someone who really
struggles with pressure
sores, this is great!

Readability and
wording. Add numbers
to the graph and
change the wording of
the categories and it
will be great!

2 1 Helps me make health
decisions. Simple user
interface allows for
efficient interactions.
Information modeled
clearly.

Goal setting needs to
be more free-form

3 2 The amount of
information

Maybe an option that
allows you to examine
where you’re shifting
your weight and for
how would be helpful
and open your product
to other applications
such as sports

107

1 1 Letting the user know
they have missed a
weight shift

The wording on
pressure ulcer vs
pressure sore

1 3 Awareness Modular information
for other application or
sub components.
Better Posture

2 2 Easily Organized Sometimes it took me a
while to go through it
because I’m not very
functional at the end of
the day

2 2 Software seems very
user friendly for all skill
levels and can give the
information needed
without confusing the
user

left blank

1 2 Can't read handwriting Charging it would be
hard to get home and
remember

108

H.4 Full Side-By-Side Responses

Home Day Week Month

1 A: Reminds him of
fitbit/apple watch.
Wants these circular
graphs with B’s color
scheme

B: Prefers B’s
green/red color
scheme. Better
Graphs overall

B: Likes to be able
to read off data
points. Likes that
there are numbers
in the circles in
the graphs

B: Likes the color-
coded data points

B: Likes having
more data

 A: Explains more

2 A: More modern, high
tech

B: likes straight bar
graphs because it’s
easier to estimate
where the halfway
point is

B: “really easy” –
likes numbers. He
would rather not
look on X and Y
axis to figure out
the time and
score

“Bar graphs are
easier to read”

“One is easier to
read. One is more
convenient”

B: Likes “days of
the week at
bottom and
times and things”

B: seems like
more
information

A: More information
at bottom of same
screen

B: Green and red are
simple to
understand. Thought
there might be an
ability to scroll and
get more data

3 A: “layout is better
rather than a list”

Likes how weight shift
and time between are
next to each other

Similar to Apple
Watch

Grouped Together

Likes bar graph
style of A but likes
numbers in B

Wants a
combination
where we have a
bar graph with
numbers

Likes the way that
screen A displays
information
(“title”:
“number”)

Likes how B also
includes the Goal
on screen

B: Likes bar graph
with numbers

Wants to have
more
summarized
information (as
in A) by default,
but wants to see
more
information by
clicking on a day

Likes screen
variants about
the same

Likes bar graph

Likes color in B

Likes Xs in A’s month
but also likes that she
can see the day
number in B’s screen

Likes the breakdown
of additional details
in A but wants the
option to remove
these details and
only see the month,
if desired

Color code
checkmarks

109

Likes the wording
on screen A

4 A: more color; more
attractive to look at

He liked the time
being displayed in the
middle of the screen

Asked for the Phone
Icon to be added to B

B: Straight bar easier
to read than circular,
though

A: Prefers bar
graphs

Line straight
across lets me
pick out when
goals are met

Likes having the
current time
displayed

B: Looks like an
Excel graph

He said it was a
close decision
between the two

A: more info on
bottom

B: Pops out more and
is color- coded

Had to put a caption
on A, whereas B is
intuitive

Likes the simplicity of
both

Likes Added
information in A

Concerned that folks
who have brain
injury might have a
hard time
interpreting the
graph

5 A: liked aesthetics

B: would like to see an
exact number

Not sure which he
liked better, at
first

A: Aesthetics
better; function
the same

B: likes numbers

B: likes having
more
information
(especially with
regards to max
time)

“Definitely B”

A: worried about
color-blind users

6 A: “seems more clear,
more sharp”

A: “Better in all ways”

A: Clearer; Can
read chart right
away

B: Has to go from
left to right and
count with his
finger

A: Seems more
clear

A: Seems clearer

7 Changed his mind
from A

B: easier to see left
and right

Boldness makes it
easier. Draws me into
it more

Doesn’t like
PM/AM

B: Likes that the
circle contains
numbers; More
information at a
glance

B: Crisper, more
direct

Harder for him to
process more
information

Would like B
because of the
breakdown of

B: primary colors pop

Recognizes the red;
has to read the X and
the check

A: “You lose the
numbers”. He wants
to be able to see the
numbers.

110

Vibrant, more
engaging

A: looks more
muddled

“Brain resets”
when having to
shift focus: He
compared this to
how he keeps his
file folders all in
one line

max weight shifts
per day: doesn’t
have to think
about it as much

8 Easier to read A: “I like
that size font”

“It just seems like this
screen is better
organized”

“I prefer bar
charts”

“To me it’s easier
to read bar
charts”

“Better
organized”

“More
detailed”

“I just prefer the
checkmarks and X’s
as opposed to the
color-coding”

9 B is easier to read to
any non-technical
person because it’s a
horizontal scale

A gives more
information –
mentioned that it
includes longest time
between shifts

He liked that the
power was in the top
right, but mentioned
that most people will
think of it as the
phone’s power rather
than the WiSAT’s
power

Likes the current time
being displayed in A

Likes the overall look
of A but thinks that B
is easier

Prefers line graphs
versus bar graphs

“Information is
the same”

Likes the actual
number being
displayed in the
line graph

A: “I like this one
a little bit better”

A: “it gives you a
little bit more
information”.

B: “Some of it
more relevant
than this one”

B: a little bit easier to
read

Would like B’s
calendar on A’s
screen because he
would like the extra
information of A with
the calendar of B

Likes the color coding
and calendar
information

10 A: looks more
engaging

He liked the central
dividing bar in A
because it’s easier to
separate

A: easier to read

“Less things going
places” - referring
to line graph

“B confuses me
for a minute”

“About the same
to me”

 B: “I may like
this one a little
more” – referring
to the max time
between shifts at
the bottom of

A: hourly shift goal

B: Calendar is easier
to track by dates

Circled but also has
date number

111

“Times in A match
up easier for me”
– referring to
matching X axis to
the goals

the screen

Liked max time in
bottom of screen

“A doesn’t show
goal”

A blocks it out and
you can’t figure out a
specific date

112

APPENDIX I: WISAT’S JITAI FRAMEWORK
Tailoring
Variables

Decision
Point

Decision Rule Intervention
Options

Example
Text*

Alternate
Text*

Weight
Shift
Count and
In-Seat
Movement
Score

Every five
hours of
Occupancy

Compare average
weight shifts per
hour for the past
five hours of
occupancy to the
Weight Shifts per
Hour goal. Do the
same for In-Seat
Movement.

 If both goals
were met,
then Scenario
1.

 If weight shift
was met, but
not in-seat
movement
score, then
Scenario 2

 If weight shift
was not met,
but in-seat
movement
score was,
then Scenario
3

 If neither were
met, then
Scenario 4

Scenario 1 Congrats! You
exceeded
your WiSAT
goals over the
past 5 hours.

X Weight
Shifts/Hour

Y Movement
Score/Hour

Great job!
You
exceeded
both your
goals over
the past 5
hours.

X Weight
Shifts/Hour

Y Movement
Score/Hour

Scenario 2 Try to move
more often.
You averaged
X hourly
weight shifts
in the past 5
hours, but
only Y
Movement
Scores per
hour.

Scenario 3 Try to shift
more often.
You averaged
Y hourly
Movement
Scores in the
past hours,
but only X
Weight Shifts
per hour.

Scenario 4 Keep trying!
Over the past
5 hours, you
missed your
shift and
movement
goals:

X Weight
Shifts/Hour

Try to shift
and move
more often.
In the past 5
hours, you
missed your
goals:

X Weight
Shifts/Hour

113

Y Movement
Score/Hour

Y Movement
Score/Hour

114

APPENDIX J: WEIGHT SHIFT CLASSIFIER PIPELINE (MATLAB)

115

REFERENCES

[1] EPUAP and NPUAP, "Prevention and treatment of pressure ulcers: quick reference
guide," International NPUAP/EPuap Pressure Ulcer Classification System. Perth,
Australia: Cambridge Media, 2014 2014.

[2] S. L. Hitzig, M. Tonack, K. A. Campbell, C. F. McGillivray, K. A. Boschen, K. Richards, and
B. C. Craven, "Secondary health complications in an aging Canadian spinal cord, injury
sample," (in English), American Journal of Physical Medicine & Rehabilitation, vol. 87,
no. 7, pp. 545-555, 2008/07// 2008.

[3] E. A. Kruger, M. Pires, Y. Ngann, M. Sterling, and S. Rubayi, "Comprehensive
management of pressure ulcers in spinal cord injury: Current concepts and future
trends," The Journal of Spinal Cord Medicine, vol. 36, no. 6, pp. 572-585, 2013/11/01/
2013.

[4] B. C. Chan, N. Nanwa, N. Mittmann, D. Bryant, P. C. Coyte, and P. E. Houghton, "The
average cost of pressure ulcer management in a community dwelling spinal cord injury
population," (in en), International Wound Journal, vol. 10, no. 4, pp. 431-440,
2013/08/01/ 2013.

[5] P. E. Houghton, K. Campbell, and P. Cpg, Canadian best practice guidelines for the
prevention and management of pressure ulcers in people with Spinal Cord Injury: a
resource handbook for clinicians. Ontario Neurotrauma Foundation Toronto, ON, 2013.

[6] M. D. Stillman, J. Barber, S. Burns, S. Williams, and J. M. Hoffman, "Complications of
Spinal Cord Injury Over the First Year After Discharge From Inpatient Rehabilitation," (in
English), Archives of Physical Medicine and Rehabilitation, vol. 98, no. 9, pp. 1800-1805,
2017/09/01/ 2017.

[7] G. DeJong, C.-H. J. Hsieh, P. Brown, R. J. Smout, S. D. Horn, P. Ballard, and T. Bouchard,
"Factors Associated with Pressure Ulcer Risk in Spinal Cord Injury Rehabilitation," (in en-
US), American Journal of Physical Medicine & Rehabilitation, vol. 93, no. 11, p. 971,
2014/11// 2014.

[8] S. E. Sonenblum, T. E. Vonk, T. W. Janssen, and S. H. Sprigle, "Effects of Wheelchair
Cushions and Pressure Relief Maneuvers on Ischial Interface Pressure and Blood Flow in
People With Spinal Cord Injury," (in English), Archives of Physical Medicine and
Rehabilitation, vol. 95, no. 7, pp. 1350-1357, 2014/07/01/ 2014.

[9] S. E. Sonenblum and S. H. Sprigle, "Some people move it, move it… for pressure injury
prevention," The Journal of Spinal Cord Medicine, vol. 41, no. 1, pp. 106-110,
2018/01/02/ 2018.

[10] S. Sprigle and S. Sonenblum, "Assessing evidence supporting redistribution of pressure
for pressure ulcer prevention: A review," (in English), Journal of Rehabilitation Research
and Development; Washington, vol. 48, no. 3, pp. 203-13, 2011 2011.

[11] S. E. Sonenblum, S. H. Sprigle, and J. S. Martin, "Everyday sitting behavior of full-time
wheelchair users," (in English), Journal of Rehabilitation Research and Development;
Washington, vol. 53, no. 5, pp. 585-597, 2016 2016.

[12] M. J. Coggrave and L. S. Rose, "A specialist seating assessment clinic: changing pressure
relief practice," (in eng), Spinal Cord, vol. 41, no. 12, pp. 692-5, Dec 2003.

[13] National Pressure Ulcer Advisory Panel, "Prevention and treatment of pressure ulcers:
quick reference guide," Washington, DC2009.

116

[14] D. A. Nawoczenski, "Pressure Sores: Prevention and Management," in Spinal Cord Injury:
Concepts and Management Approaches, L. E. Buchanan and D. A. Nawoczenski, Eds.
Baltimore: Williams &Wilkins, 1987.

[15] M. M. Sliwinski and E. Druin, "Intervention Principles and Position Change," in Spinal
Cord Injuries: Management and Rehabilitation, S. A. Sisto, E. Druin, and M. M. Sliwinski,
Eds. 1 Har/DVD edition ed.: Mosby, 2009.

[16] NPUAP/EPUAP/PPPIA, C. Media, Ed. National Pressure Ulcer Advisory Panel/European
Pressure Ulcer Advisory Panel/Pan Pacific Pressure Injury Alliance: Prevention and
Treatment of Pressure Ulcers: Clinical Practice Guideline
(http://internationalguideline.com). Perth, Australia, 2014, pp. 1-308.

[17] J. S. Krause and L. Broderick, "Patterns of recurrent pressure ulcers after spinal cord
injury: identification of risk and protective factors 5 or more years after onset," (in eng),
Arch Phys Med Rehabil, vol. 85, no. 8, pp. 1257-64, Aug 2004.

[18] S. L. Garber, D. H. Rintala, K. A. Hart, and M. J. Fuhrer, "Pressure ulcer risk in spinal cord
injury: predictors of ulcer status over 3 years," Arch Phys Med Rehabil, vol. 81, no. 4, pp.
465-71, Apr 2000.

[19] P. Raghavan, W. A. Raza, Y. S. Ahmed, and M. A. Chamberlain, "Prevalence of pressure
sores in a community sample of spinal injury patients," (in eng), Clin Rehabil, vol. 17, no.
8, pp. 879-84, Dec 2003.

[20] S. E. Sonenblum and S. Sprigle, "You Got to Move It, Move It! Pressure Reliefs, Weight
Shifts, and Wheelchair Mobility in Individuals with SCI," in RESNA, Arlington, VA, 2016.

[21] S. Carr and B. Wilson, "Promotion of Pressure-relief Exercising in a Spinal Injury Patient:
A Multiple Baseline Across Settings Design," (in en), Behavioural Psychotherapy, vol. 11,
no. 04, p. 329, 1983/10// 1983.

[22] M. Bächlin, K. Förster, and G. Tröster, "SwimMaster: A Wearable Assistant for
Swimmer," 2009, pp. 215-224, New York, NY, USA: ACM.

[23] S. Consolvo, K. Everitt, I. Smith, and J. A. Landay, "Design Requirements for Technologies
That Encourage Physical Activity," 2006, pp. 457-466, New York, NY, USA: ACM.

[24] S. Consolvo, P. Klasnja, D. W. McDonald, D. Avrahami, J. Froehlich, L. LeGrand, R. Libby,
K. Mosher, and J. A. Landay, "Flowers or a Robot Army?: Encouraging Awareness &
Activity with Personal, Mobile Displays," 2008, pp. 54-63, New York, NY, USA: ACM.

[25] A. Möller, L. Roalter, S. Diewald, J. Scherr, M. Kranz, N. Hammerla, P. Olivier, and T.
Plötz, "GymSkill: A personal trainer for physical exercises," in 2012 IEEE International
Conference on Pervasive Computing and Communications, 2012, pp. 213-220.

[26] A. N. Thorndike, S. Mills, L. Sonnenberg, D. Palakshappa, T. Gao, C. T. Pau, and S. Regan,
"Activity Monitor Intervention to Promote Physical Activity of Physicians-In-Training:
Randomized Controlled Trial," (in en), PLOS ONE, vol. 9, no. 6, p. e100251, 2014/06/20/
2014.

[27] L. Mamykina, E. Mynatt, P. Davidson, and D. Greenblatt, "MAHI: Investigation of Social
Scaffolding for Reflective Thinking in Diabetes Management," 2008, pp. 477-486, New
York, NY, USA: ACM.

[28] A. S. Miller, J. A. Cafazzo, and E. Seto, "A game plan: Gamification design principles in
mHealth applications for chronic disease management," Health Informatics Journal, vol.
1, p. 10, 2014 2014.

[29] J. C. Kvedar, A. L. Fogel, E. Elenko, and D. Zohar, "Digital medicine's march on chronic
disease," (in en), Nature Biotechnology, Comments and Opinion 2016/03/10/ 2016.

[30] T. Thadani, "Skip the pillbox — the answer to taking your medicine might be in your
hand," in San Francisco Chronicle, ed, 2017.

117

[31] R. Dai, S. E. Sonenblum, and S. Sprigle, "A robust wheelchair pressure relief monitoring
system," in 2012 Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, 2012, pp. 6107-6110.

[32] D. Mravyan, M. Popovic, and M. Mravyan, "Monitoring system for pressure sore
prevention," Patent US9149211B2, 2015-10-06, 2015. Available:
https://patents.google.com/patent/US9149211B2/en.

[33] P. Ryan, "Integrated Theory of Health Behavior Change," Clinical nurse specialist CNS,
vol. 23, no. 3, pp. 161-172, 2009 2009.

[34] K. Glanz and D. B. Bishop, "The role of behavioral science theory in development and
implementation of public health interventions," Annual review of public health, vol. 31,
pp. 399-418, 2010 2010.

[35] E. B. Kahn, L. T. Ramsey, R. C. Brownson, G. W. Heath, E. H. Howze, K. E. Powell, E. J.
Stone, M. W. Rajab, and P. Corso, "The effectiveness of interventions to increase
physical activity: A systematic review1,2 1The names and affiliations of the Task Force
members are listed in the front of this supplement and at
www.thecommunityguide.org. 2Address correspondence and reprint requests to: Peter
A. Briss, MD, Community Guide Branch, Centers for Disease Control and Prevention,
4770 Buford Highway, MS-K73, Atlanta, GA 30341. E-mail: PBriss@cdc.gov," American
Journal of Preventive Medicine, vol. 22, no. 4, Supplement 1, pp. 73-107, 2002/05/01/
2002.

[36] J. O. Prochaska and W. F. Velicer, "The transtheoretical model of health behavior
change," (in eng), American journal of health promotion: AJHP, vol. 12, no. 1, pp. 38-48,
1997/10//Sep- undefined 1997.

[37] G. W. Heath, D. C. Parra, O. L. Sarmiento, L. B. Andersen, N. Owen, S. Goenka, F.
Montes, and R. C. Brownson, "Evidence-based intervention in physical activity: lessons
from around the world," The Lancet, vol. 380, no. 9838, pp. 272-281, 2012/07/21/ 2012.

[38] Y. Wang, A. Fadhil, J.-P. Lange, and H. Reiterer, "Towards a Holistic Approach to
Designing Theory-based Mobile Health Interventions," arXiv preprint arXiv:1712.02548,
2017.

[39] S. Michie, M. Richardson, M. Johnston, C. Abraham, J. Francis, W. Hardeman, M. P.
Eccles, J. Cane, and C. E. Wood, "The Behavior Change Technique Taxonomy (v1) of 93
Hierarchically Clustered Techniques: Building an International Consensus for the
Reporting of Behavior Change Interventions," (in en), Annals of Behavioral Medicine, vol.
46, no. 1, pp. 81-95, 2013/08/01/ 2013.

[40] H. Kuru, "Behavior Change Techniques Used in Mobile Applications Targeting Physical
Activity: A Systematic Review," Current and Emerging mHealth Technologies: Adoption,
Implementation, and Use, pp. 23-35, 2018.

[41] K. Mercer, M. Li, L. Giangregorio, C. Burns, and K. Grindrod, "Behavior change
techniques present in wearable activity trackers: a critical analysis," JMIR mHealth and
uHealth, vol. 4, no. 2, 2016.

[42] E. J. Lyons, Z. H. Lewis, B. G. Mayrsohn, and J. L. Rowland, "Behavior Change Techniques
Implemented in Electronic Lifestyle Activity Monitors: A Systematic Content Analysis,"
Journal of Medical Internet Research, vol. 16, no. 8, 2014/08/15/ 2014.

[43] L. S. Belmon, A. Middelweerd, S. J. te Velde, and J. Brug, "Dutch young adults ratings of
behavior change techniques applied in mobile phone apps to promote physical activity:
a cross-sectional survey," JMIR mHealth and uHealth, vol. 3, no. 4, 2015.

[44] D. Simons, I. De Bourdeaudhuij, P. Clarys, K. De Cocker, C. Vandelanotte, and B.
Deforche, "A smartphone app to promote an active lifestyle in lower-educated working

118

young adults: development, usability, acceptability, and feasibility study," JMIR mHealth
and uHealth, vol. 6, no. 2, 2018.

[45] I. Nahum-Shani, S. N. Smith, B. J. Spring, L. M. Collins, K. Witkiewitz, A. Tewari, and S. A.
Murphy, "Just-in-Time Adaptive Interventions (JITAIs) in Mobile Health: Key
Components and Design Principles for Ongoing Health Behavior Support," Annals of
Behavioral Medicine, vol. 52, no. 6, pp. 446-462, 2018.

[46] S. Dantzig, G. Geleijnse, and A. T. Halteren, "Toward a persuasive mobile application to
reduce sedentary behavior," Personal and ubiquitous computing, vol. 17, no. 6, pp.
1237-1246, 2013.

[47] F. Spillers and S. Asimakopoulos, "Does Social User Experience Improve Motivation for
Runners?," in International Conference of Design, User Experience, and Usability, 2014,
pp. 358-369: Springer, Cham.

[48] D. Johnson, S. Deterding, K.-A. Kuhn, A. Staneva, S. Stoyanov, and L. Hides, "Gamification
for health and wellbeing: A systematic review of the literature," Internet Interventions,
vol. 6, pp. 89-106, 2016/11/01/ 2016.

[49] J. Nielsen, Usability engineering. Elsevier, 1994.
[50] M. F. Theofanos, "Common Industry Specification for Usabilty--Requirements," 2007.
[51] ISO 9241-210:2010; Ergonomics of human-system interaction -- Part 210: Human-

centred design for interactive systems, 2010.
[52] J. H. Choi and H.-J. Lee, "Facets of simplicity for the smartphone interface: A structural

model," International Journal of Human-Computer Studies, vol. 70, no. 2, pp. 129-142,
2012/02/01/ 2012.

[53] J. Maeda, "Simplicity," (in en), BT Technology Journal, vol. 22, no. 4, pp. 285-286,
2004/10/01/ 2004.

[54] L. Meloncon and E. Warner, "Data visualizations: A literature review and opportunities
for technical and professional communication," in 2017 IEEE International Professional
Communication Conference (ProComm), 2017, pp. 1-9.

[55] J. S. Ancker and D. Kaufman, "Rethinking Health Numeracy: A Multidisciplinary
Literature Review," Journal of the American Medical Informatics Association : JAMIA,
vol. 14, no. 6, pp. 713-721, 2007 2007.

[56] D. C. Mohr, S. M. Schueller, E. Montague, M. N. Burns, and P. Rashidi, "The Behavioral
Intervention Technology Model: An Integrated Conceptual and Technological
Framework for eHealth and mHealth Interventions," Journal of Medical Internet
Research, vol. 16, no. 6, 2014/06/05/ 2014.

[57] F. Bentley, K. Tollmar, P. Stephenson, L. Levy, B. Jones, S. Robertson, E. Price, R.
Catrambone, and J. Wilson, "Health Mashups: Presenting statistical patterns between
wellbeing data and context in natural language to promote behavior change," ACM
Transactions on Computer-Human Interaction (TOCHI), vol. 20, no. 5, p. 30, 2013 2013.

[58] I. Apple, "Physical and Motor Skills Accessibility," ed.
[59] Mobgen, "Apple WWDC," ed, 2016.
[60] M. Bruce and P. A. Pereira, Microservices in Action. Manning Publications Company,

2018.
[61] P. Cheng, "A smartphone application that informs weight shifting behavior to promote

tissue health," Thesis, Georgia Institute of Technology, 2015.
[62] J. Kirakowski, "The use of questionnaire methods for usability assessment," Unpublished

manuscript. Recuperado el, vol. 12, 1994.
[63] J. Kirakowski. What is SUMI? Available: http://sumi.uxp.ie/about/whatis.html

119

[64] G. O'Malley, G. Dowdall, A. Burls, I. J. Perry, and N. Curran, "Exploring the usability of a
mobile app for adolescent obesity management," JMIR mHealth and uHealth, vol. 2, no.
2, 2014.

[65] S. van der Weegen, R. Verwey, H. J. Tange, M. D. Spreeuwenberg, and L. P. de Witte,
"Usability testing of a monitoring and feedback tool to stimulate physical activity,"
Patient preference and adherence, vol. 8, p. 311, 2014.

[66] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J.
Grenning, J. Highsmith, A. Hunt, and R. Jeffries, "Manifesto for agile software
development," 2001.

[67] C. Larman and V. R. Basili, "Iterative and incremental developments. a brief history,"
Computer, vol. 36, no. 6, pp. 47-56, 2003.

[68] A. Cockburn, "Using both incremental and iterative development," STSC CrossTalk (USAF
Software Technology Support Center), vol. 21, no. 5, pp. 27-30, 2008.

[69] K. Townsend, R. Davidson, and C. Cufí, Getting Started with Bluetooth Low Energy.
O'Reilly, 2014.

[70] M. Todorov. (2016). Realm is an Object-Centric Modern Database for Mobile Apps.
Available: https://academy.realm.io/posts/realm-object-centric-present-day-database-
mobile-applications/

[71] A. O. S. P. . Background Execution Limits. Available:
https://developer.android.com/about/versions/oreo/background

