18 research outputs found

    Tetradecylthioacetic Acid Increases Hepatic Mitochondrial β-Oxidation and Alters Fatty Acid Composition in a Mouse Model of Chronic Inflammation

    Get PDF
    The administration of tetradecylthioacetic acid (TTA), a hypolipidemic and anti-inflammatory modified bioactive fatty acid, has in several experiments based on high fat diets been shown to improve lipid transport and utilization. It was suggested that increased mitochondrial and peroxisomal fatty acid oxidation in the liver of Wistar rats results in reduced plasma triacylglycerol (TAG) levels. Here we assessed the potential of TTA to prevent tumor necrosis factor (TNF) α-induced lipid modifications in human TNFα (hTNFα) transgenic mice. These mice are characterized by reduced β-oxidation and changed fatty acid composition in the liver. The effect of dietary treatment with TTA on persistent, low-grade hTNFα overexpression in mice showed a beneficial effect through decreasing TAG plasma concentrations and positively affecting saturated and monounsaturated fatty acid proportions in the liver, leading to an increased anti-inflammatory fatty acid index in this group. We also observed an increase of mitochondrial β-oxidation in the livers of TTA treated mice. Concomitantly, there were enhanced plasma levels of carnitine, acetyl carnitine, propionyl carnitine, and octanoyl carnitine, no changed levels in trimethyllysine and palmitoyl carnitine, and a decreased level of the precursor for carnitine, called γ-butyrobetaine. Nevertheless, TTA administration led to increased hepatic TAG levels that warrant further investigations to ascertain that TTA may be a promising candidate for use in the amelioration of inflammatory disorders characterized by changed lipid metabolism due to raised TNFα levels

    Lipid-Lowering Effects of Tetradecylthioacetic Acid in Antipsychotic-Exposed, Female Rats: Challenges with Long-Term Treatment

    Get PDF
    Background: Psychiatric patients often require chronic treatment with antipsychotic drugs, and while rats are frequently used to study antipsychotic-induced metabolic adverse effects, long-term exposure has only partially mimicked the appetite-stimulating and weight-inducing effects found in the clinical setting. Antipsychotic-induced effects on serum lipids are also inconsistent in rats, but in a recent study we demonstrated that subchronic treatment with the orexigenic antipsychotic olanzapine resulted in weight-independent increase in serum triglycerides and activation of lipogenic gene expression in female rats. In addition, a recent long-term study in male rats showed that chronic treatment with antipsychotic drugs induced dyslipidemic effects, despite the lack of weight gain. Aims: In the current study, we sought to examine long-term effects of antipsychotic drugs on weight gain, lipid levels and lipid composition after twice-daily administration of antipsychotics to female rats, and to investigate potential beneficial effects of the lipid-lowering agent tetradecylthioacetic acid (TTA), a modified fatty acid. Methods: Female rats were exposed to orexigenic antipsychotics (olanzapine or clozapine), metabolically neutral antipsychotics (aripiprazole or ziprasidone), or TTA for 8 weeks. Separate groups received a combination of clozapine and TTA or olanzapine and TTA. The effects of TTA and the combination of olanzapine and TTA after 2 weeks were also investigated. Results: The antipsychotic-induced weight gain and serum triglyceride increase observed in the subchronic setting was not present after 8 weeks of treatment with antipsychotics, while lipid-lowering effect of TTA was much more pronounced in the chronic than in the subchronic setting, with concomitant upregulation of key oxidative enzymes in the liver. Unexpectedly, TTA potentiated weight gain in rats treated with antipsychotics. Conclusion: TTA is a promising candidate for prophylactic treatment of antipsychotic-induced dyslipidemic effects, but a more valid long-term rat model for antipsychotic-induced metabolic adverse effects is required
    corecore