102 research outputs found
Gastric cancer and Helicobacter pylori: a combined analysis of 12 case control studies nested within prospective cohorts
BACKGROUND: The magnitude of the association
between Helicobacter pylori and
incidence of gastric cancer is unclear. H
pylori infection and the circulating antibody
response can be lost with development
of cancer; thus retrospective studies
are subject to bias resulting from classifi-
cation of cases as H pylori negative when
they were infected in the past.
AIMS: To combine data from all case control
studies nested within prospective
cohorts to assess more reliably the relative
risk of gastric cancer associated with H
pylori infection.To investigate variation in
relative risk by age, sex, cancer type and
subsite, and interval between blood sampling
and cancer diagnosis.
METHODS: Studies were eligible if blood
samples for H pylori serology were collected
before diagnosis of gastric cancer in
cases. Identified published studies and two
unpublished studies were included. Individual
subject data were obtained for
each. Matched odds ratios (ORs) and 95%
confidence intervals (95% CI) were calculated
for the association between H pylori
and gastric cancer.
RESULTS: Twelve studies with 1228 gastric
cancer cases were considered. The association
with H pylori was restricted to noncardia
cancers (OR 3.0; 95% CI 2.3–3.8)
and was stronger when blood samples for
H pylori serology were collected 10+ years
before cancer diagnosis (5.9; 3.4–10.3). H
pylori infection was not associated with an
altered overall risk of cardia cancer (1.0;
0.7–1.4).
CONCLUSIONS: These results suggest that
5.9 is the best estimate of the relative risk
of non-cardia cancer associated with H
pylori infection and that H pylori does not
increase the risk of cardia cancer. They
also support the idea that when H pylori
status is assessed close to cancer diagnosis,
the magnitude of the non-cardia
association may be underestimated
Temperature dependence of the breakdown of the quantum Hall effect studied by induced currents
Copyright © 2004 The American Physical SocietyWe have developed a model of the high-current breakdown of the integer quantum Hall effect, as measured in contactless experiments using a highly-sensitive torsion balance magnetometer. The model predicts that, for empirically “low-mobility” samples (μ<75 m2 V−1 s−1), the critical current for breakdown should decrease with, and have a linear dependence on, temperature. This prediction is verified experimentally with the addition of a low-temperature saturation of the critical current at a temperature that depends on both sample number density and filling factor. It is shown that this saturation is consistent with quasielastic inter-Landau-level scattering when the maximum electric field in the sample reaches a large enough value. In addition we show how this model can be extended to give qualitative agreement with experiments on high-mobility samples
Repositioning of the global epicentre of non-optimal cholesterol
High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.</p
Repositioning of the global epicentre of non-optimal cholesterol
High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol�which is a marker of cardiovascular risk�changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95 credible interval 3.7 million�4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world. © 2020, The Author(s), under exclusive licence to Springer Nature Limited
La bienauenturada Rosa pemana de S. Maria de la Tercera Ordende Santo Domingo : su admirable vida, y preciosa muerte
Sign.:¿-3¿¡8, 4¿¡4, 5¿¡, A-Z¡8, 2A-2F¡8, 2G¡4, 2H¡8, 2I¡2AntepTexto a dos co
- …