14 research outputs found

    The 21 cm Signature of Shock Heated and Diffuse Cosmic String Wakes

    Full text link
    The analysis of the 21 cm signature of cosmic string wakes is extended in several ways. First we consider the constraints on GμG\mu from the absorption signal of shock heated wakes laid down much later than matter radiation equality. Secondly we analyze the signal of diffuse wake, that is those wakes in which there is a baryon overdensity but which have not shock heated. Finally we compare the size of these signals compared to the expected thermal noise per pixel which dominates over the background cosmic gas brightness temperature and find that the cosmic string signal will exceed the thermal noise of an individual pixel in the Square Kilometre Array for string tensions Gμ>2.5×10−8G\mu > 2.5 \times 10^{-8}.Comment: 10 pages, 4 figures, Appendix added, version published in JCA

    Computation of the Heavy-Light Decay Constant using Non-relativistic Lattice QCD

    Full text link
    We report results on a lattice calculation of the heavy-light meson decay constant employing the non-relativistic QCD approach for heavy quark and Wilson action for light quark. Simulations are carried out at β=6.0\beta=6.0 on a 163×4816^3\times 48 lattice. Signal to noise ratio for the ground state is significantly improved compared to simulations in the static approximation, enabling us to extract the decay constant reliably. We compute the heavy-light decay constant for several values of heavy quark mass and estimate the magnitude of the deviation from the heavy mass scaling law fPmP=constf_{P} \sqrt{m_{P}} = const. For the BB meson we find fB=171±22−45+19f_{B} = 171\pm 22^{+19}_{-45} MeV, while an extrapolation to the static limit yields fBstaticf_{B}^{static} = 297±36−30+15297\pm 36^{+15}_{-30} MeV.Comment: 34 pages in LaTeX including 10 figures using epsf.sty, uuencoded-gziped-shar format, HUPD-940

    Local wind speed forecasting based on WRF-HDWind coupling

    Get PDF
    Wind speed forecasts obtained by Numerical Weather Prediction models are limited for fine interpretation in heterogeneous terrain, in which different roughnesses and orographies occur. This limitation is derived from the use of low-resolution and grid-box averaged data. In this paper a dynamical downscaling method is presented to increase the local accuracy of wind speed forecasts. The proposed method divides the wind speed forecasting into two steps. In the first one, the mesoscale model WRF (Weather Research and Forecasting) is used for getting wind speed forecasts at specific points of the study domain. On a second stage, these values are used for feeding the HDWind microscale model. HDWind is a local model that provides both a high-resolution wind field that covers the entire study domain and values of wind speed and direction at very located points. As an example of use of the proposed method, we calculate a high-resolution wind field in an urban-interface area from Badajoz, a South-West Spanish city located near the Portugal border. The results obtained are compared with the values read by a weathervane tower of the Spanish State Meteorological Agency (AEMET) in order to prove that the microscale model improves the forecasts obtained by the mesoscale model

    Local wind speed forecasting based on WRF-HDWind coupling

    Get PDF
    [EN] Wind speed forecasts obtained by Numerical Weather Prediction models are limited for fine interpretation in heterogeneous terrain, in which different roughnesses and orographies occur. This limitation is derived from the use of low-resolution and grid-box averaged data. In this paper a dynamical downscaling method is presented to increase the local accuracy of wind speed forecasts. The proposed method divides the wind speed forecasting into two steps. In the first one, the mesoscale model WRF (Weather Research and Forecasting) is used for getting wind speed forecasts at specific points of the study domain. On a second stage, these values are used for feeding the HDWind microscale model. HDWind is a local model that provides both a high-resolution wind field that covers the entire study domain and values of wind speed and direction at very located points. As an example of use of the proposed method, we calculate a high-resolution wind field in an urban-interface area from Badajoz, a South-West Spanish city located near the Portugal border. The results obtained are compared with the values read by a weathervane tower of the Spanish State Meteorological Agency (AEMET) in order to prove that the microscale model improves the forecasts obtained by the mesoscale model

    Probing the imprints of generalized interacting dark energy on the growth of perturbations

    Get PDF
    We extensively study the evolution and distinct signatures of cosmological models, in which dark energy interacts directly with dark matter. We first focus on the imprints of these coupled models on the cosmic microwave background temperature power spectrum, in which we discuss the multipole peak separation together with the integrated Sachs-Wolfe effect. We also address the growth of matter perturbations, and disentangle the interacting dark energy models using the expansion history together with the growth history. We find that a disformal coupling between dark matter and dark energy induces intermediate-scales and time-dependent damped oscillatory features in the matter growth rate function, a unique characteristic of this coupling. Apart from the disformal coupling, we also consider conformally coupled models, together with models which simultaneously make use of both couplings

    Comparative plant growth promoting traits and distribution of rhizobacteria associated with heavy metals in contaminated soils

    No full text
    The heavy metals at high concentration are generally toxic to the plants for their metabolism and growth; therefore, interactions among metals, rhizosphere microbes and plants have attracted attention because of the biotechnological potential of microorganisms for metal removal directly from contaminated soils or the possible transference of them to the plants. The aim of this study was to compare the relationships between the physiological in vitro characteristics of rhizobacteria isolated from plant metal accumulators and their distribution relating with the heavy metals content in contaminated soils. The results of this study showed that the heavy metals present in the rhizosphere of the plant species analyzed, decrease the microbial biomass and content of heavy metals caused a different distribution of rhizobacteria found. Gram negative rhizobacteria (90%) and gram positive rhizobacteria (10%) were isolated; all of them are metal-resistant rhizobacteria and 50% of the isolated rhizobacteria possess both traits: higher indol acetic acid and siderophore producers. The inoculation with these rhizosphere microorganisms that possess metal-tolerating ability and plant growth promoting activities, can be recommended with a practical importance for both metal-contaminated environment and plant growth promotion
    corecore