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A B S T R A C T   

Wind speed forecasts obtained by Numerical Weather Prediction models are limited for fine interpretation in 
heterogeneous terrain, in which different roughnesses and orographies occur. This limitation is derived from the 
use of low-resolution and grid-box averaged data. In this paper a dynamical downscaling method is presented to 
increase the local accuracy of wind speed forecasts. The proposed method divides the wind speed forecasting 
into two steps. In the first one, the mesoscale model WRF (Weather Research and Forecasting) is used for getting 
wind speed forecasts at specific points of the study domain. On a second stage, these values are used for feeding 
the HDWind microscale model. HDWind is a local model that provides both a high-resolution wind field that 
covers the entire study domain and values of wind speed and direction at very located points. As an example of 
use of the proposed method, we calculate a high-resolution wind field in an urban-interface area from Badajoz, a 
South-West Spanish city located near the Portugal border. The results obtained are compared with the values 
read by a weathervane tower of the Spanish State Meteorological Agency (AEMET) in order to prove that the 
microscale model improves the forecasts obtained by the mesoscale model.   

1. Introduction 

The near-surface wind speed has a considerable importance in our 
society (e.g., insurance industry, coastal erosion, forest and infra
structure damage, storm surges, air-sea exchange). They have sig
nificant relevance in applications such as pollutant diffusion evaluation, 
forest fires modelling, construction issues or even wind energy resource 
estimation. Moreover, surface wind speeds exhibit variability at much 
smaller spatial scales than that resolved by mesoscale Numerical 
Weather Prediction (NWP) models. Hence there is a need to develop 
tools for downscaling NWP to generate finer scale projections of near- 
surface wind climatologies (Salameh et al., 2009). 

The prediction of the meteorological variable corresponding to the 
wind can be made at different scales (Sánchez et al., 2013), being the 
most widely used two of the scales defined by Orlanski (1975): me
soscale (up to 2 km) and microscale (less than 2 km). The wind 

predictions calculated by mesoscale models usually have low spatial 
resolution. This limitation makes difficult its application to hetero
geneous areas providing results that do not reflect local characteristics, 
such as topography or roughness (El-Samra et al., 2018; Fernández- 
González et al., 2018; Hari-Prasad et al., 2017; Trapero et al., 2013;  
Wagenbrenner et al., 2016). These and other local features may be 
incorporated into the weather forecast through the use of microscale 
models. 

However, the use of microscale models is not enough by itself. The 
weather is the result of the interaction of different factors besides the 
local characteristics: the shape of our planet, its rotation and transla
tion, the inclination of the axis of rotation, distance and trajectory with 
the sun, quantity and distribution of land and sea, sea currents, etc. 
Through the use of microscale models, it is not possible to contemplate 
all these phenomena, so its temporal scope is limited. 

Currently, some authors propose the coupling of mesoscale and 
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microscale models for wind speed forecasting (see references below). In 
this way, usually known as downscaling, the microscale models adapt 
the predictive information provided by the mesoscale models to local 
characteristics. There are mainly two ways to make this approach ac
cording to the nature of the local adjustment: dynamical downscaling 
and statistical downscaling. Dynamical downscaling is well established 
and widely used (Gopalan et al., 2014; Mughal et al., 2018; Oliver et al., 
2015; Sanz-Rodrigo et al., 2017; Tominaga et al., 2011; Verkaik et al., 
2006; Wagenbrenner et al., 2016; Yamada and Koike, 2011). It is a 
general method which can be applied anywhere over the globe (Xue 
et al., 2014), but the amount of time and resources needed to carry out 
the simulation can be a challenge whenever a real-time assessment is 
required. In order to overcome this limitation of dynamic downscaling, 
some authors propose a statistical downscaling (Liu and Ren, 2015;  
Manor and Berkovic, 2015; Otero-Casal et al., 2019; Sunyer et al., 
2012) as an alternative that allows the adjustment to the peculiarities of 
the terrain in real-time applications. 

The deep knowledge about the behavior of prediction errors is also 
an issue worthy of being investigated. There are recent works focused 
on identifying the characteristics of deviations, as the temporal point of 
view compiled by the Temporal Distortion Index (TDI) and Dynamic 
Mean Absolute Error (DMAE) proposed by Frías-Paredes et al. (2016, 
2018), and its application to improve the management of wind energy 
generation (Frías-Paredes et al., 2017). 

In this paper we continue the trend based on the mesoscale-micro
scale coupling strategy to improve the estimation of wind prediction at 
the local scale. Specifically, we perform a dynamic downscaling using 
the output of the Weather Research and Forecasting (WRF) mesoscale 
prediction model as input data for the HDWind microscale model. 
Thanks to the use of advanced numerical techniques, it is possible to 
perform the simulation in the local domain in a reasonable period of 
time. Specifically, the computational cost of the simulation involving a 
period of 423 days for the study domain (see Section 2.2) was about 
1.269 h for the WRF simulation (3 h per simulated day) and 20 min for 
the HDWind simulation. 

The WRF model (Skamarock et al., 2008) is one of the most used 
mesoscale models both in research and operational frameworks. It is an 
NWP model appropriated for a wide range of applications including 
real-time predictions, data assimilation development and studies, at
mospheric parameterized-physics research, regional climate simula
tions, air quality modelling, atmosphere-ocean coupling, idealized si
mulations, etc. There are other mesoscale models but their use is not 
available to the public, like HIRLAM.1 

The HDWind model (Ferragut et al., 2011), developed by the Re
search Group on Numerical Simulation and Scientific Calculus (SINUMCC) 
of the University of Salamanca to which most of the authors belong, 
provides a high-resolution wind field that adjusts specific wind mea
surements to the local characteristics, such as the slope, the roughness 
of the terrain or the gradients of temperature on the surface. 

This paper is organized according to the following structure. Section 
2 briefly reviews the two models used for the accurate wind speed es
timation and their configuration: WRF (in Section 2.1.1) for generating 
the long-term prediction and HDWind (in Section 2.1.2) for its local 
adjustment. Section 2.1.3 explains the procedure followed for the 
coupling of the two models. The simulation scenario is described in 
detail in Section 2.2, where the configuration details used for the WRF 
(in Section 2.2.1) and HDWind (in Section 2.2.2) models is also col
lected. In section 3, the proposed procedure is applied to evaluate the 
improvement obtained through the dynamic downscaling, and the si
mulation results are analyzed. Finally, the paper ends with its conclu
sions in Section 4. 

2. Experimental design 

2.1. Numerical weather prediction models 

2.1.1. Mesoscale model: weather research and forecasting 
The WRF model is a NWP and atmospheric simulation system de

veloped by multiple agencies -the National Center for Atmospheric 
Research (NCAR), the National Oceanic and Atmospheric Administration 
(NOAA), the Air Force Weather Agency (AFWA), the Naval Research 
Laboratory (NRL), the Center for Analysis and Prediction of Storms (CAPS) 
and the Federal Aviation Administration (FAA)-. This model was chosen 
for the development of this work because it is considered as one of the 
most advanced state-of-the-art NWP systems (Michalakes et al., 2001) 
and it has been widely and thoroughly validated. It is used in a regular 
basis by the scientific and wind energy community both for operational 
real-time forecasts and long-term simulations. 

WRF is a robust and versatile model, capable of handling several 
sources of static and dynamic data and can be used with relatively 
confidence in a wide range of terrains, locations and meteorological 
regimens. This model has been designed to be a framework for NWP 
models developed by a multi-agency collaboration project. It is a 
modular single-source code that can be configured to serve both for 
operational forecasting and for atmospheric research (Skamarock et al., 
2008). It is also a supported “community model”, a free and shared 
resource with distributed development and centralized support. Be
sides, WRF is open source and its use does not require any license. 

WRF has two dynamical cores: the Advanced Research WRF (ARW) 
and the Nonhydrostatic Mesoscale Model (NMM). The ARW core devel
opment and support are centered at the Mesoscale & Microscale 
Meteorology (MMM) department of NCAR, while the NMM core devel
opment is centered at the Environmental Modelling Center (EMC) of 
NOAA and the support is provided by the Developmental Testbed Center 
(DTC) department in NCAR. 

The ARW dynamical core has been used in this work. The dynamical 
core is fully compressible, based on Euler primitive equations in non- 
hydrostatic conservative formulation but with hydrostatic option 
(Ooyama, 1990). It includes solvers with a large suite of options for 
numerical schemes and parameterization of physical processes. In its 
primitive equation systems, it incorporates advection, pressure gra
dients, Coriolis, buoyancy, filters, diffusion and time-stepping. The 
basic prognostic variables are the velocity components, the air potential 
temperature, the mixing ratios of hydrometeors and the perturbations 
from a hydrostatic reference state of the geopotential and surface 
pressure of dry air. The vertical levels are based on mass terrain-fol
lowing hydrostatic pressure vertical coordinates (sigma) (Laprise, 
1992) and the top of the model is a constant pressure surface 
(Skamarock et al., 2008). 

The WRF-ARW horizontal grid is the Arakawa C-grid staggered 
(Arakawa and Konor, 1996). The advection is solved by 2nd, 3rd, 4th, 
5th and 6th order centered and upwind biased schemes. In the temporal 
dimension, the model uses a time-split integration using a 2nd or 3rd- 
order Runge-Kutta scheme with adaptive time step option (Klemp et al., 
2007). 

2.1.2. Microscale model: HDWind 
The origin of the high-resolution wind field model HDWind lies in 

an asymptotic approximation of the primitive Navier-Stokes equations 
on the assumption that the horizontal dimensions of the simulation 
domain are much larger than the vertical dimension, resulting in a mass 
consistent vertical diffusion model capable of providing a 3D wind field 
by solving only 2D linear equations. The model includes other simpli
fications: the nonlinear terms of the Navier-Stokes equations are ne
glected, it is assumed that the air temperature decreases linearly with 
altitude and the air compressibility is neglected. The details of how the 
HDWind model equations are derived can be found in (Asensio et al., 
2005). 1 http://hirlam.org/ 
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The 2D equations involved in the model depend on the orography 
and the temperature on the ground surface, which allows to reflect the 
local effects due to the orography and the surface temperature gra
dients. The model also depends on the horizontal components of the 
wind at the boundary of the domain. The model depends on a single 
parameter, the inverse of the friction coefficient = 1 , which is defined 
in terms of the roughness length of the terrain z0 (see Ferragut et al. 
(2011)). These equations provide a high-resolution 3D wind field in an 
air layer over the study surface, above which the orography and the 
temperature of the surface have no influence. 

In Ferragut et al. (2011), the wind field provided by HDWind is 
fitted to specific wind measurements vi, i = 1, …, n located at several 
points Pi = (xi,yi,zi), i = 1, …, n within the 3D domain. This adjust
ment requires the resolution of an optimal control problem in which the 
airflow at the horizontal domain boundary is the control element. In 
this way, the model does not require the measurement of meteor
ological wind at the domain boundary, it is enough to provide mea
surements of wind (intensity and direction) in a reduced set of points in 
the domain, for example the measurements provided by weather sta
tions. 

In Cascón et al. (2016) techniques of reduced basis have been in
corporated enabling a much more efficient resolution of the optimal 
control problem. The reduced basis methodology is especially appro
priate in problems in which real-time results are required. The HDWind 
model was developed under C++ using Neptuno++, a finite element 
toolbox developed by some of the authors. 

In addition, HDWind has been integrated into the ArcGIS 
Geographic Information System (Prieto et al., 2017) to automate and 
simplify the geospatial input data and the display of the solutions, and 
to improve user accessibility. 

The details of the model equations exceed the scope of this article, 
interested readers can find detailed explanations in the aforementioned 
papers. Its implementation code has been introduced in the Spanish 
Intellectual Property Registry on October 18, 2018 under the registra
tion code 00/2019/692. 

Fig. 1 summarizes the HDWind inputs (orography, surface rough
ness, surface temperature distribution and punctual wind measure
ments), outputs (the wind field at different heights) and parameter (the 
inverse of the friction coefficient ξ). 

2.1.3. WRF-HDWind coupling 
As discussed in Section 1, the mesoscale models cannot properly 

resolve the wind speed induced by the local characteristics such as 
orography or surface temperature gradients, and the microscale models 
do not contemplate the atmospheric state beyond their local domain, 
allowing to simulate not more than a short time period. Being the 
weather the result of the relationship of a high number of atmospheric 
factors, the mesoscale models (here the WRF model) are able to predict 
the hourly wind regime at resolutions of several kilometers, which is 

adapted to the local characteristics through the use of microscale 
models (in this case HDWind). 

Under this scheme, the predictive information provided by the WRF 
model is considered, with a medium resolution. On the other hand, the 
precise conditions of the local domain to be studied, topography and 
land uses, are incorporated, with a high-resolution, through the simu
lation with HDWind. 

As a result, HDWind provides a high-resolution wind field (see  
Fig. 2) for successive time instants applicable to a wide range of pos
sibilities: from the transport and diffusion of air pollutants (Ferragut 
et al., 2013), the prediction of the spread of a wildland fire (Asensio 
et al., 2005), or even the development of time series on the forecast of 
wind speed and direction to predict the production in a wind farm. 

The coupling has been carried out so that the output provided by the 
WRF model is used as input for the HDWind model. For this, the first 
step to be performed is to select the local domain for which the high- 
resolution wind field is going to be calculated. 

Next, the WRF model is executed by selecting a broader domain that 
contains the local domain to be simulated using the HDWind model, 
preferably in its central zone. WRF allows to simulate or predict the 
weather conditions that will be used in the simulation with HDWind. In 
this way, it is possible to perform microscale simulations that cover a 
broad time period. 

Fig. 1. HDWind input and output scheme.  

Fig. 2. Simulated high-resolution wind field at 10 m with HDWind.  
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Once the simulation or prediction has been carried out, the NetCDF2 

files generated by WRF will be processed to obtain the desired weather 
conditions, in this case wind direction and intensity, in a reduced set of 
points contained within the local domain. 

With the weather conditions provided by WRF, the HDWind model 
is executed providing both a 3D wind field and the local wind value at 
certain points for comparative analysis. Fig. 2 shows the wind field at a 
certain time instant simulated using the HDWind model. The color of 
the surface represents the changes in the terrain orography. The com
plete simulation scenario is described in Section 2.2. 

When a time series needs to be simulated to predict behavior over 
time the proposed procedure needs to repeatedly solve the optimal 
control problem involved within the HDWind model. When the number 
of time steps to be simulated is very high, the resolution of this problem 
can take a considerable amount of time. 

In order to solve the problem efficiently, we propose a simply 
modification of (Cascón et al., 2016). Note first, that the HDWind model 
requires to solve a linear PDE (see Ferragut et al. (2011)) where the 
right-hand side depends (linearly) on the wind measurements and the 
temperature of ground surface. Then, we solve the associated PDE 
2 × n + 1 times (being n the number of WRF-measures involved in the 
downscaling) for reference values of wind and for the surface tem
perature given. For a particular time, the HDWind field can be obtained 
as linear combination of the solutions previously computed. When the 
temperature of the ground surface is updated, we only need to solve the 
corresponding PDE to continue. This procedure is called the super
position method and, in our case, can be applied since orography and 
wind measurements location are fixed. From the numerical point of 
view, we use Finite Element Method (FEM) to approximate the 
HDWind-PDE. The proposed scheme only requires to calculate and 
factorize once the associate matrix. 

2.2. Scenario 

The improvement obtained by the downscaling procedure is tested 
in an urban-interface area from Badajoz, a Spanish city located near the 
Portugal border. The simulated period runs from January 2, 2017 at 
00:00 h local time until February 28, 2018 at 23:30 h local time. The 
HDWind simulation area includes heterogeneous surfaces with very 
different roughness: areas with very low roughness, as the river 
Guadiana, and areas with high roughness, as the urbanized areas from 
the city of Badajoz, going through areas with intermediate values such 
as crops and forests. This disparity of roughness (see Fig. 4) makes this 
scenario a great opportunity for the testing of the proposed procedure, 
allowing the adjustment of the wind speed forecasts provided by WRF 
to the local particularities. 

2.2.1. WRF set-up 
The simulation was performed using the ARW-WRF model to gen

erate wind data forecasts with one day ahead of prediction horizon and 
with a temporal resolution of 15 min. We have used the WRF version 
3.8.1 modified by (Hahmann et al., 2019). 

The domain simulated using the ARW-WRF model for the Badajoz 
region is composed of two one-way nested domains, with increasing 
resolution, centered at 38.8875∘ N; 7.0117∘ W in the WGS84 co
ordinates. This point is close to the location of the weathervane tower of 
the Spanish State Meteorological Agency (AEMET). Fig. 5 shows the 
points where the WRF center and the AEMET weathervane tower are 
located. These two nested domains are formed with 100x100 points and 
horizontal resolution of 9 km, the largest one, and 88x88 points and 
horizontal resolution of 3 km, the smallest one, and are represented in  
Fig. 3. Each of these two domains has 35 vertical levels from the surface 

to the top of the atmosphere, located at the constant pressure surface of 
25 mbar (≈ 20 km). The running time of the WRF model in the HPC 
(High Performance Computer) cluster composed by 24 CPUs Intel(R) 
Xeon(R) Gold 6126 CPU @ 2.60GHz with 128Gb of RAM was ap
proximately 3 h (GFS download + pre-process + execution) per si
mulated day. In total, the WRF simulation required 1269 h of com
puting. 

Finally, the election of all the physics parameterizations, summar
ized in Table 1, was based on results from the New European Wind 
Atlas (NEWA) project3. These results were validated in hundreds of 
points across Europe and the physics setup with the lowest wind speed 
errors was chosen (Hahmann et al., 2019). The WRF setup used in this 
work is virtually identical to the one obtained in the NEWA project, 
apart from the lower number of vertical levels and the use of GFS input 
data, instead of reanalysis data. We tested two WRF setups using dif
ferent number of vertical levels, that is, 61 as recommended in 
(Hahmann et al., 2019) and 35 vertical levels. Since the results don't 
show any significant improvement for the case of study when we use a 
higher number of vertical levels, we chose the WRF setup which uses 35 
vertical levels because it also allowed to reduce the computational cost. 
We consider that the reason why the use of a greater number of vertical 
levels does not provide an improvement may be due to the fact that the 
output of the WRF model is located on a crop field while the observa
tion is carried out in an urbanized area with greater effective roughness 
(See Fig. 5). In this scenario, the limitation of mesoscale models when 
applied in heterogeneous terrain is appreciated, to which we propose a 
solution in this paper by combining mesoscale and microscale models. 

Real-time Global Forecasting System (GFS) data from the 1200 UTC 
cycle and a horizontal resolution of 0.25∘ are used to feed the daily real 
time WRF simulations. This data, with a horizon of 48 hours and 3 
hours frequency, are used in each simulation to generate the day ahead 
meteorological forecasts. 

Updated land cover from Corine (2012) with a horizontal resolution 
of 100 m together with high-resolution topography data from the 
Shuttle Radar Topography Mission (SRTM) with 90 m horizontal re
solution are used instead of the default land cover and topography 
provided by the WRF model. The use of high-resolution static data has 
proven to improve the WRF general accuracy in multiple locations and 
different types of terrain (Cheng et al., 2013; Correia et al., 2013; Ki 
Kim et al., 2019; Kirthiga and Patel, 2018). 

2.2.2. HDWind set-up 
The simulation domain used for the HDWind model also has the 

center located near the weathervane tower of AEMET, with latitude 
38.8873∘ N and longitude 7.0093∘ W in the WGS84 coordinates. This 

Fig. 3. WRF domains used to obtain the wind forecast.  

2 Network Common Data Form, https://www.unidata.ucar.edu/ 
software/netcdf/ 3 http://www.neweuropeanwindatlas.eu 
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point is halfway between the location of the AEMET weather station 
and the point at which WRF data are extracted. The HDWind domain 
mesh has a resolution of 10 meters and 795x752 elements, which is a 
domain of almost 8x8 km (see Fig. 4). 

The HDWind model has been provided with terrain altimetry data 
from the Digital Elevation Model MDT05 (IGN, 2013) published by the 
Spanish National Geographic Institute (IGN) and land use data from the 
Spanish Forestry Map 1: 50,000 (MFE50) (Magrama, 2007) developed by 
the Ministry of Agriculture, Food and Environment of the Spanish Gov
ernment. The surface temperature has been considered constant given 
the impossibility of obtaining soil temperature data with sufficient 

temporal resolution (30 min). 
The HDWind simulation was carried out in two stages. In a first step, 

the January 2017 data were used to adjust the inverse of the friction 
coefficient ξ as function of the surface roughness length z0: 

=
+ +

f z
a a z a z

( ) 1
0

0 1 0 2 0
2 (1)  

The coefficients {a0,a1,a2} were computed to minimize the root 
mean square error (RMSE) between AEMET-measured and HDWind- 
computed velocities at the first month (January 2017). The roughness 
length z0 comes from the classification of land uses and its correspon
dence with the classification of Davenport et al. (2000) (see Fig. 4). To 

Table 1 
Physics schemes used in the WRF model setup.    

WRF version 3.8.1 (modified)  

Grid 2 nests: 9 km, 3 km; 35 vertical levels, 1-way nesting 
Land use data Corine 100 m (2012) 
Land Surface Model NOAH-LSM (Tewari et al., 2004) 

Planetary Boundary Layer MYNN 2.5 level TKE scheme (Nakanishi and Niino, 2009) 
Surface Layer MYNN 2.5 level TKE scheme (Nakanishi and Niino, 2009) 
Microphysics WRF Single-Moment 5-class scheme (WSM) (Hong et al., 2004) 
Long Wave Radiation RRTMG scheme (Iacono et al., 2008) 
Short Wave Radiation RRTMG scheme (Iacono et al., 2008) 
Cumulus Parameterisation Kain-Fritsch scheme (Kain, 2004) (only used in the outermost domain (9 km resolution)) 

Fig. 4. Roughness index of the HDWind simulation area. The red squared indicates where the WRF output and weather station are located (see Fig. 5).  
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solve this optimization problem a method based on the golden-section 
search was used. The computational cost for the adjustment was about 
20 hours on a workstation equipped with two Intel(R) Xeon(R) 
E5–2670 v2 processors (10 cores, each working at a frequency of 
2.50 GHz) and 64 GB RAM. 

In a second step, the ARW-WRF data were used by the HDWind 
model to perform the downscaling throughout the entire study period 
(423 days). The strategy to compute the HDWind field, that was men
tioned at Section 2.1.3, allows to obtain the results at the simulated 
period covered in about 20 minutes on the same workstation. Note that 
although the parallelization of this computation is possible, this cal
culation has been performed sequentially. 

The data generated by the WRF model used as input to the HDWind 
model were extracted at the central point of the simulation domain 
(38.8875∘ N,7.0117∘ W) and at a surface height of 80 m, that is, the 
nearest point on the WRF mesh to the weather station with whose 
observations the data is compared. This weather station is located at 
coordinates Latitude 38, 8860∘ N Longitude 7.0092∘ W and at an alti
tude of 175 m above sea level (See Fig. 5). 

3. Results 

For the evaluation of the procedure involving the coupling of the 
WRF-HDWind models, both the wind speed forecasts obtained by WRF 
and the high-resolution wind field provided by the joint operation of 
the WRF + HDWind models are compared with the measurements read 
by a weathervane tower of AEMET over the period of time which goes 

from January 2, 2017 at 00:00 h local time until February 28, 2018 at 
23:30 h with a temporal resolution of 30 min. For this comparison, both 
the results of the WRF simulation and the joint operation of the 
WRF + HDwind models were extracted at the AEMET station location 
and at a surface height of 10 m. To make the comparison, the three 
typical error statistics have been used, that is the BIAS (eq. 2), the Mean 
Absolute Error (MAE) (eq. 3), and the Root Mean Square Error (RMSE) 
(eq. 4). Besides, different graphics that highlight the improvement ob
tained over the initial meteorological forecasts have been made. 

= =BIAS
V P

N

( )
i

N
i i

1
(2)  

= =MAE
V P

N
i

N
i i

1
(3)  

= =RMSE
V P

N

( )
i n

i i
1,

2

(4)  

Where Vi refers to the i − th observation of wind speed and Pi cor
responds to the predicted value. 

So, the first analysis consists of a heat map that allows the visuali
zation of all data deviation in a unique plot. The X axis refers to each 
one of the days predicted in our study period meanwhile the Y axis 
contains each 30-min data predicted (48 data per day). The color in
tensity corresponds to the level of absolute error (AE) presented by the 

Fig. 5. Location of WRF output and weather station.  
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prediction. Fig. 6 contains the deviations presented by the WRF simu
lation meanwhile the Fig. 7 presents the deviations from the 
WRF + HDWind models. It is clear that, in general, the intensity of the 

WRF + HDWind errors is much less than those presented by the WRF, 
showing in case of WRF + HDWind major areas with low error levels 
reflected in the greater clarity of the plot. Also, Figs. 6 and 7 show that 

Fig. 6. Absolute error presented by the WRF simulation.  

Fig. 7. Absolute error presented by the WRF + HDWind simulation.  
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errors are concentrated in certain days pointing out some episodes less 
predictable. In order to understand these episodes, the correlation be
tween errors and the daily summary of the AEMET-measurements has 
been studied. The results show that the error observed in these less 
predictable episodes is mainly related to wind gust and to a lesser ex
tent to precipitations. 

It is important to note that the time slot of the day in which the 
models WRF + HDWind have a lower level of error corresponds to 
night-time hours. This behavior is due to the fact that a uniform surface 
temperature value has been used for the whole study period as 

explained in Section 2.2.2, a situation that does not correspond to 
reality and that will be addressed in future works. 

Since the WRF setup used to obtain the predictive information is a 
recommended generic configuration (Hahmann et al., 2019), we have 
selected 6 days with the highest accumulated error and we have applied 
the same simulation process: using the WRF mesoscale model and 
subsequent downscaling with the HDWind microscale model and dif
ferent microphysics parameterizations of the WRF model. The objective 
is to assess the impact of having used a generic WRF setup (see section 
2.2.1) and verify if any other configuration would have been more 

Fig. 8. Histogram of WRF absolute errors.  

Fig. 9. Histogram of WRF + HDWind absolute errors.  
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appropriate for our case of study. The tested microphysics para
meterizations are: Ferrier, Godddard, Kessler, Lin, Morrison, Thomson, 
WRF Single-Moment 3-class (WSM3), WRF Single-Moment 5-class 
(WSM5), WRF Single-Moment 6-class (WSM6), WRF Double-Moment 5- 
class (WDM5) and WRF Double-Moment 6-class (WDM6). 

The results show that although there are days that are better re
presented by other setups than the initial one, we have verified that for 
these 6 days, in general, the original setup is the one that best fits. The 
errors obtained of all WRF setups tested are summarized in Tables 2, 3 
and 4, which contain the AE, the MAE and the RMSE errors respec
tively. Furthermore, these tables also collect the errors obtained in the 
downscaling using the HDWind microscale model (when it is fed with 
predictive information provided by the different WRF setups). It is 
important to note that the combination of the WRF and HDWind models 
improves the result in all the cases considered, and specially that the 
worst result of the joint operation of both models improves significantly 
the best result of the isolated operation of the WRF mesoscale model. 
Thus, it might be concluded that the joint operation of the WRF and 
HDWind models allows obtaining an accurate estimate of the wind 
intensity even though an optimal configuration of the WRF model has 
not been chosen for the study scenario. 

In the same line, the histogram is another useful graphic tool to 
compare the absolute errors of the predictions for each time step. So,  
Fig. 8 contains the histogram related to the WRF deviations meanwhile 
the WRF + HDWind ones are compiled in the Fig. 9. It can be seen how 
the histogram from WRF + HDWind errors presents a major frequency 
of data with low values meanwhile the WRF histogram presents a less 
pointed distribution with major frequency of higher absolute errors. 

To complete the performance comparison, we have also carried out 
an error analysis using wind direction as a ranking factor. This type of 
analysis is very useful to identify possible systematic errors caused in 
specific cases that depend of wind direction and to highlight if different 
behavior can be assumed depending of wind regime. As a result,  
Figs. 10 and 11 contain the respective wind rose graphics for absolute 
errors of both models, WRF and WRF + HDWind. It is observed that, for 
both of them, the absolute error distributions are quite similar for dif
ferent sections of wind direction for our case of study. Besides, it is 

Fig. 10. Wind rose of WRF absolute errors.  

Fig. 11. Wind rose of WRF + HDWind absolute errors.  

Fig. 12. Hourly mean wind speed.  
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important to remark that the absolute error decrease obtained by the 
WRF + HDWind coupling is also observed, but this decrease is more 
significative when wind comes from south and surrounds for our case of 
study. The wind from these directions is characterized by crossing very 
heterogeneous areas, such as urban areas, crop fields or the Guadiana 
river. 

The tests carried out on the joint operation of the WRF + HDWind 
models show that the proposed method solves one of the problems that 
the WRF model presents when it is applied by itself to the area selected 
for the study, which is the overestimation of wind speed. Some users 
have experienced a similar behavior when it is applied to areas of 
complex terrain (Cheng and Steenburgh, 2005; El-Samra et al., 2018;  
Gómez-Navarro et al., 2015; Hahmann et al., 2019; Jiménez et al., 
2012; Mass and Ovens, 2011; Solbakken and Birkelund, 2018). So, 
when mean wind speed are compared this fact is clearly observed. The 
case of the daily profile, that is the mean wind speed observed by each 
30 min over all data of the period, is collected in Fig. 12 where the blue 
line corresponds to the WRF data, the green one to the WRF + HDWind 
data and the orange line is the real data from the AEMET 

meteorological station. It is clear how the wind speed is in general 
overestimated by the WRF model meanwhile the mean offered by 
WRF + HDWind is more similar to the real data. One possible ex
planation for the overestimation of the wind intensity values obtained 
during the simulation of this scenario is that this may be due to the 
heterogeneity of the terrain that limits the accuracy obtained from the 
WRF mesoscale model. As mentioned above, the point of the WRF mesh 
closest to the observation station, where the data has been extracted, 
and the observation station are located on different land uses. In fact, 
the output of the WRF model is located on a crop field while the ob
servation was carried out in an urbanized area. The same situation is 
observed when monthly data are analyzed as can be seen in Fig. 13. Our 
proposal solves this limitation of the mesoscale models when applied to 
heterogeneous terrain through the combination of mesoscale and mi
croscale models. Report once again the difference in the level of error 
values obtained in WRF + HDWind between daytime and night-time 
hours. 

The general improvement obtained by the WRF + HDWind is 
clearly showed by the statistic errors calculated in our time period. All 

Fig. 13. Monthly mean wind speed.  

Table 5 
Statistic errors.            

Month-Year MeanWRF MeanWRF+HDWind MeanAEMET BIASWRF BIASWRF+HDWind MAEWRF MAEWRF+HDWind RMSEWRF RMSEWRF+HDWind  

January 2017 2.40 1.49 1.50 0.90 −0.02 1.15 0.74 1.52 1.00 
February 2017 3.53 2.18 2.37 1.16 −0.20 1.36 0.79 1.72 1.05 
March 2017 3.40 2.10 2.42 0.99 −0.32 1.28 0.83 1.71 1.15 
April 2017 3.15 1.94 2.32 0.83 −0.38 1.14 0.79 1.43 1.03 
May 2017 3.40 2.11 2.38 1.02 −0.28 1.31 0.74 1.71 0.97 
June 2017 3.48 2.15 2.73 0.75 −0.58 1.30 1.00 1.72 1.33 
July 2017 3.40 2.10 2.62 0.78 −0.52 1.16 0.90 1.48 1.20 
August 2017 3.06 1.89 2.38 0.68 −0.49 1.15 0.89 1.53 1.20 
September 2017 2.88 1.79 2.27 0.61 −0.49 1.02 0.83 1.30 1.07 
October 2017 2.41 1.49 1.41 0.99 0.07 1.20 0.64 1.50 0.84 
November 2017 2.62 1.62 1.70 0.92 −0.07 1.27 0.85 1.64 1.19 
December 2017 2.99 1.84 1.95 1.04 −0.11 1.26 0.72 1.60 0.95 
January 2018 3.02 1.87 2.02 1.00 −0.15 1.25 0.81 1.61 1.08 
February 2018 3.11 1.93 2.38 0.73 −0.45 1.18 0.98 1.55 1.36 
Total Period 3.07 1.89 2.18 0.89 −0.29 1.22 0.82 1.58 1.11 
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data are compiled in the Table 5, both monthly information and the 
total one. Besides it contains the respective mean speed measured and 
predicted by each model. Therefore, the three deviation measurements 
are reduced: in case of BIAS the data obtained by WRF + HDWind 
presents −0.29 m/s in front of the 0.89 m/s of the WRF data. The MAE 
of the WRF + HDWind achieves a value of 0.82 m/s in front of 1.22 m/ 
s obtained by WRF and, to finish, the RMSE presented by 
WRF + HDWind has a value of 1.11 m/s meanwhile WRF offers 

1.58 m/s. 
Moreover, if we analyze the deviation observed by months, we can 

see how all of monthly results are improved after using the HDWind 
model, achieving less than 1 m/s of MAE in all months and under 
1.4 m/s in terms of RMSE. The improvement of the WRF + HDWind 
achieves up to 40% of error decreasing in terms of MAE in months as 
February 2017 or October 2017. The same situation can be seen in 
terms of RMSE. So, Fig. 14 contains the monthly MAE obtained by WRF 

Fig. 14. Monthly MAE (Mean Absolute Error).  

Fig. 15. Monthly RMSE (Root Mean Square Error).  
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(blue bars) and by WRF + HDWind (green bars) and Fig. 15 the re
spective monthly RMSE with the same colors. 

To complete the comparison of WRF and WRF + HDWind simula
tions we have evaluated the correlation coefficients between each 
model and the respective real data. So, as it is shown in Table 6, the 
correlation coefficient achieves a value of 0.72 in both cases. The 
monthly discrimination shows on the one hand, that both models pre
sent the same level of correlation with practically equal values in all 
months and, on the other hand, that the correlation achieves values 
greater than 0.75 in a half of the months being around 0.7 in practically 
the rest. The same situation is observed when we make the analysis by 
daily hours. The results of correlation coefficients observed when only 
data from each daily instant are used, can be seen in Fig. 16. It shows 
how both models present practically the same correlation with mea
sured data along the day. 

Note that the results show that the roughness coefficients adjust
ment mentioned in Section 2.2.2 is robust and independent of wind 
data. Although only the January 2017 data were used in this adjust
ment the correlation between AEMET-measurement and 

WRF + HDWind-simulated is high satisfactory all along period covered. 

4. Discussion and conclusions 

During the development of this work, two Numerical Weather 
Prediction models, the WRF mesoscale model and the HDWind micro
scale model, have been coupled for the accurate estimation of a wind 
field that meets the local characteristics of the terrain. 

For their coupling, both models have been studied and analyzed. 
Next, a dynamic downscaling has been carried out in which HDWind 
uses geolocalized data of wind speed and direction as input data, ob
tained by the execution of the WRF model. 

The proposed procedure has been applied to an area located in the 
urban-interface of the city of Badajoz (Spain). Note that this method can 
be applied along the globe by simply feeding the models with the ap
propriate spatial information to represent the local characteristics of the 
terrain. The results have been compared with the measurements re
corded by a physical anemometer of AEMET. The results obtained show 
that the joint operation of the WRF + HDWind models allows to reduce 
the margin of error up to 40% with respect to the execution of the WRF 
model by itself. 

Different microphysics parameterizations of the WRF model has 
been tested in order to assess the impact of having used a generic WRF 
setup. Results show that the combination of the WRF and HDWind 
models improves the result in all the cases considered, and specially 
that the worst result of the joint operation of both models improves 
significantly the best result of the isolated operation of the WRF me
soscale model. Thus, it might be concluded that the joint operation of 
the WRF and HDWind models allows obtaining an accurate estimate of 
the wind intensity even though an optimal configuration of the WRF 
model has not been chosen for the study scenario. 

A problem detected in the wind intensity values obtained by the 
WRF model for the study domain is the overestimation of the wind 
speed. The tests carried out on the joint operation of the 
WRF + HDWind model shows that the proposed method is able to solve 
this problem. A possible explanation for the overestimation may be due 
to the fact that the point of the WRF mesh closest to the observation 

Table 6 
Monthly correlation coefficients.     

Month-Year Correlation 
coefficientWRF 

Correlation coefficientWRF+HDWind  

January 2017 0.67 0.67 
March 2017 0.77 0.77 
April 2017 0.77 0.77 
May 2017 0.76 0.76 
June 2017 0.76 0.76 
July 2017 0.67 0.67 
August 2017 0.67 0.67 
September 2017 0.67 0.67 
October 2017 0.75 0.75 
November 2017 0.57 0.57 
December 2017 0.55 0.55 
January 2018 0.81 0.81 
February 2018 0.74 0.74 
Total Period 0.72 0.72 

Fig. 16. Hourly correlation coefficients.  
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station is located on a crop field while the observation is carried out in 
an urbanized area with greater effective roughness. Under this scenario, 
the limitations of mesoscale models when applied in heterogeneous 
terrain are appreciated. 

In addition, the statistical analysis of the data shows that the joint 
operation of the WRF + HDWind models provides a more accurate 
wind field in the study area, especially during the night-time hours. 
Although the HDWind model allows to consider the temperature gra
dients on the surface, that is to incorporate the local heating and 
cooling of the surface due for example to solar radiation, the state of the 
art of satellite image analysis and other remote sensing techniques does 
not allow us to generate this information with sufficient temporal re
solution. We consider the use of constant surface temperature the cause 
of the greatest deviation during daily hours. 

It is important to note that the computational cost added by the use 
of the HDWind model is significantly lower than the cost of executing 
the WRF mesoscale model, so that there is not a significant increase in 
the time required to carry out the simulation of a wind field. 

The improvement obtained in the prediction of the meteorological 
wind intensity can contribute significantly to go a step further in other 
areas where the meteorological wind is an important factor, such as the 
spread of forest fires or the dispersion of pollutants in the atmosphere. 
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