14 research outputs found

    Diagnosis and management of glutaric aciduria type I – revised recommendations

    Get PDF
    Glutaric aciduria type I (synonym, glutaric acidemia type I) is a rare organic aciduria. Untreated patients characteristically develop dystonia during infancy resulting in a high morbidity and mortality. The neuropathological correlate is striatal injury which results from encephalopathic crises precipitated by infectious diseases, immunizations and surgery during a finite period of brain development, or develops insidiously without clinically apparent crises. Glutaric aciduria type I is caused by inherited deficiency of glutaryl-CoA dehydrogenase which is involved in the catabolic pathways of L-lysine, L-hydroxylysine and L-tryptophan. This defect gives rise to elevated glutaric acid, 3-hydroxyglutaric acid, glutaconic acid, and glutarylcarnitine which can be detected by gas chromatography/mass spectrometry (organic acids) or tandem mass spectrometry (acylcarnitines). Glutaric aciduria type I is included in the panel of diseases that are identified by expanded newborn screening in some countries. It has been shown that in the majority of neonatally diagnosed patients striatal injury can be prevented by combined metabolic treatment. Metabolic treatment that includes a low lysine diet, carnitine supplementation and intensified emergency treatment during acute episodes of intercurrent illness should be introduced and monitored by an experienced interdisciplinary team. However, initiation of treatment after the onset of symptoms is generally not effective in preventing permanent damage. Secondary dystonia is often difficult to treat, and the efficacy of available drugs cannot be predicted precisely in individual patients. The major aim of this revision is to re-evaluate the previous diagnostic and therapeutic recommendations for patients with this disease and incorporate new research findings into the guideline

    High-Performance Liquid Chromatographic Analysis of Drugs of Abuse in Biologic Samples

    Get PDF
    Recently, drug abuse has become a serious social problem world wide. In Japan, methamphetamine (MP) is the most popular drug of abuse. In addition to MP, the use of 4,5-methylenedioxymethamphetamine (MDMA), called ecstacy, is rapidly increasing, especially among young people. The development of simple and convenient analytical methods for the analysis of these drugs of abuse is necessary for the prediction of and protection from human health risks. Many useful methods have been developed for qualification and quantification of drugs of abuse. Among these, gas chromatography with mass spectrometry (MS) and high-performance liquid chromatography with MS (HPLC-MS or LC-MS) or fluorescence (HPLC-FL) detection are widely used. As highly sensitive methods, precolumn or postcolumn derivatization methods are commonly utilized in HPLC. This review focuses on HPLC methods used for the practical analysis of drugs of abuse, mainly for amphetamine derivatives and MDMAs in biologic samples such as urine, blood, and hair

    Enhanced interpretation of newborn screening results without analyte cutoff values

    Get PDF
    Purpose: To improve quality of newborn screening by tandem mass spectrometry with a novel approach made possible by the collaboration of 154 laboratories in 49 countries. Methods: A database of 767,464 results from 12,721 cases affected with 60 conditions was used to build multivariate pattern recognition software that generates tools integrating multiple clinically significant results into a single score. This score is determined by the overlap between normal and disease ranges, penetration within the disease range, differences between conditions, and weighted correction factors. Results: Ninety tools target either a single condition or the differential diagnosis between multiple conditions. Scores are expressed as the percentile rank among all cases with the same condition and are compared to interpretation guidelines. Retrospective evaluation of past cases suggests that these tools could have avoided at least half of 279 false-positive outcomes caused by carrier status for fatty-acid oxidation disorders and could have prevented 88% of known false-negative events. Conclusion: Application of this computational approach to raw data is independent from single analyte cutoff values. In Minnesota, the tools have been a major contributing factor to the sustained achievement of a false-positive rate below 0.1% and a positive predictive value above 60%. © 2012 American College of Medical Genetics and Genomics

    Enhanced interpretation of newborn screening results without analyte cutoff values

    No full text
    Purpose: To improve quality of newborn screening by tandem mass spectrometry with a novel approach made possible by the collaboration of 154 laboratories in 49 countries. Methods: A database of 767,464 results from 12,721 cases affected with 60 conditions was used to build multivariate pattern recognition software that generates tools integrating multiple clinically significant results into a single score. This score is determined by the overlap between normal and disease ranges, penetration within the disease range, differences between conditions, and weighted correction factors. Results: Ninety tools target either a single condition or the differential diagnosis between multiple conditions. Scores are expressed as the percentile rank among all cases with the same condition and are compared to interpretation guidelines. Retrospective evaluation of past cases suggests that these tools could have avoided at least half of 279 false-positive outcomes caused by carrier status for fatty-acid oxidation disorders and could have prevented 88% of known false-negative events. Conclusion: Application of this computational approach to raw data is independent from single analyte cutoff values. In Minnesota, the tools have been a major contributing factor to the sustained achievement of a false-positive rate below 0.1% and a positive predictive value above 60%. © 2012 American College of Medical Genetics and Genomics

    Proposed recommendations for diagnosing and managing individuals with glutaric aciduria type I: second revision

    Full text link
    Glutaric aciduria type I (GA-I; synonym, glutaric acidemia type I) is a rare inherited metabolic disease caused by deficiency of glutaryl-CoA dehydrogenase located in the catabolic pathways of L-lysine, L-hydroxylysine, and L-tryptophan. The enzymatic defect results in elevated concentrations of glutaric acid, 3-hydroxyglutaric acid, glutaconic acid, and glutaryl carnitine in body tissues, which can be reliably detected by gas chromatography/mass spectrometry (organic acids) and tandem mass spectrometry (acylcarnitines). Most untreated individuals with GA-I experience acute encephalopathic crises during the first 6 years of life that are triggered by infectious diseases, febrile reaction to vaccinations, and surgery. These crises result in striatal injury and consequent dystonic movement disorder; thus, significant mortality and morbidity results. In some patients, neurologic disease may also develop without clinically apparent crises at any age. Neonatal screening for GA-I us being used in a growing number of countries worldwide and is cost effective. Metabolic treatment, consisting of low lysine diet, carnitine supplementation, and intensified emergency treatment during catabolism, is effective treatment and improves neurologic outcome in those individuals diagnosed early; treatment after symptom onset, however, is less effective. Dietary treatment is relaxed after age 6 years and should be supervised by specialized metabolic centers. The major aim of this second revision of proposed recommendations is to re-evaluate the previous recommendations (Kölker et al. J Inherit Metab Dis 30:5-22, 2007b; J Inherit Metab Dis 34:677-694, 2011) and add new research findings, relevant clinical aspects, and the perspective of affected individuals
    corecore