942 research outputs found
Study of cryogenic propellant systems for loading the space shuttle
Computer programs were written to model the liquid oxygen loading system for the space shuttle. The programs allow selection of input data through graphic displays which schematically depict the part of the system being modeled. The computed output is also displayed in the form of graphs and printed messages. Any one of six computation options may be selected. The first four of these pertain to thermal stresses, pressure surges, cooldown times, flow rates and pressures during cooldown. Options five and six deal with possible water hammer effects due to closing of valves, steady flow and transient response to changes in operating conditions after cooldown. Procedures are given for operation of the graphic display unit and minicomputer
Otitis Media Supuratif Akut Di Poliklinik Tht-kl Blu RSU. Prof. Dr. R. D. Kandou Manado Periode Januari 2010-desember 2012
: Acute suppurative otitis media (ASOM) is an acute inflammation of the middle ear that lasted less than three weeks. The age factor is one of the risk factors associated with the ASOM. Children are more susceptible to ASOM, where the frequency will decrease with age. From the research ASOM most vulnerable to children due to tubal eustachius in children horizontally straight,shorter and wide. This research uses descriptive method through retrospective medical record in Ear, Nose, Throat-Head and Neck Surgery Department of Prof. R. D. Kandou General Hospital Manado on the period January 2010-December 2012
High-dose epirubicin is not an alternative to standard-dose doxorubicin in the treatment of advanced soft tissue sarcomas. A study of the EORTC soft tissue and bone sarcoma group.
The activity and toxicity of single-agent standard-dose doxorubicin were compared with that of two schedules of high-dose epirubicin. A total of 334 chemonaive patients with histologically confirmed advanced soft-tissue sarcomas received (A) doxorubicin 75 mg m(-2) on day 1 (112 patients), (B) epirubicin 150 mg m(-2) on day 1 (111 patients) or (C) epirubicin 50 mg m(-2) day(-1) on days 1, 2 and 3 (111 patients); all given as bolus injection at 3-week intervals. A median of four treatment cycles was given. Median age was 52 years (19-70 years) and performance score 1 (0-2). Of 314 evaluable patients, 45 (14%) had an objective tumour response (eight complete response, 35 partial response). There were no differences among the three groups. Median time to progression for groups A, B and C was 16, 14 and 12 weeks, and median survival 45, 47 and 45 weeks respectively. Neither progression-free (P = 0.93) nor overall survival (P = 0.89) differed among the three groups. After the first cycle of therapy, two patients died of infection and one owing to cardiovascular disease, all on epirubicin. Both dose schedules of epirubicin were more myelotoxic than doxorubicin. Cardiotoxicity (> or = grade 3) occurred in 1%, 0% and 2% respectively. Regardless of the schedule, high-dose epirubicin is not a preferred alternative to standard-dose doxorubicin in the treatment of patients with advanced soft-tissue sarcomas
Second order gauge invariant gravitational perturbations of a Kerr black hole
We investigate higher than the first order gravitational perturbations in the
Newman-Penrose formalism. Equations for the Weyl scalar representing
outgoing gravitational radiation, can be uncoupled into a single wave equation
to any perturbative order. For second order perturbations about a Kerr black
hole, we prove the existence of a first and second order gauge (coordinates)
and tetrad invariant waveform, , by explicit construction. This
waveform is formed by the second order piece of plus a term, quadratic
in first order perturbations, chosen to make totally invariant and to
have the appropriate behavior in an asymptotically flat gauge.
fulfills a single wave equation of the form where is the same wave operator as for first order perturbations and is a
source term build up out of (known to this level) first order perturbations. We
discuss the issues of imposition of initial data to this equation, computation
of the energy and momentum radiated and wave extraction for direct comparison
with full numerical approaches to solve Einstein equations.Comment: 19 pages, REVTEX. Some misprints corrected and changes to improve
presentation. Version to appear in PR
Exact Solutions of Regge-Wheeler Equation and Quasi-Normal Modes of Compact Objects
The well-known Regge-Wheeler equation describes the axial perturbations of
Schwarzschild metric in the linear approximation. From a mathematical point of
view it presents a particular case of the confluent Heun equation and can be
solved exactly, due to recent mathematical developments. We present the basic
properties of its general solution. A novel analytical approach and numerical
techniques for study the boundary problems which correspond to quasi-normal
modes of black holes and other simple models of compact objects are developed.Comment: latex file, 25 pages, 4 figures, new references, new results and new
Appendix added, some comments and corrections in the text made. Accepted for
publication in Classical and Quantum Gravity, 2006, simplification of
notations, changes in the norm in some formulas, corrections in reference
Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy
The thermal expansion coefficient (TEC) of single-layer graphene is estimated
with temperature-dependent Raman spectroscopy in the temperature range between
200 and 400 K. It is found to be strongly dependent on temperature but remains
negative in the whole temperature range, with a room temperature value of
-8.0x10^{-6} K^{-1}. The strain caused by the TEC mismatch between graphene and
the substrate plays a crucial role in determining the physical properties of
graphene, and hence its effect must be accounted for in the interpretation of
experimental data taken at cryogenic or elevated temperatures.Comment: 17 pagese, 3 figures, and supporting information (4 pages, 3
figures); Nano Letters, 201
Post-Transcriptional Trafficking and Regulation of Neuronal Gene Expression
Intracellular messenger RNA (mRNA) traffic and translation must be highly regulated, both temporally and spatially, within eukaryotic cells to support the complex functional partitioning. This capacity is essential in neurons because it provides a mechanism for rapid input-restricted activity-dependent protein synthesis in individual dendritic spines. While this feature is thought to be important for synaptic plasticity, the structures and mechanisms that support this capability are largely unknown. Certainly specialized RNA binding proteins and binding elements in the 3′ untranslated region (UTR) of translationally regulated mRNA are important, but the subtlety and complexity of this system suggests that an intermediate “specificity” component is also involved. Small non-coding microRNA (miRNA) are essential for CNS development and may fulfill this role by acting as the guide strand for mediating complex patterns of post-transcriptional regulation. In this review we examine post-synaptic gene regulation, mRNA trafficking and the emerging role of post-transcriptional gene silencing in synaptic plasticity
Fragile X Related Protein 1 Clusters with Ribosomes and Messenger RNAs at a Subset of Dendritic Spines in the Mouse Hippocampus
The formation and storage of memories in neuronal networks relies on new protein synthesis, which can occur locally at synapses using translational machinery present in dendrites and at spines. These new proteins support long-lasting changes in synapse strength and size in response to high levels of synaptic activity. To ensure that proteins are made at the appropriate time and location to enable these synaptic changes, messenger RNA (mRNA) translation is tightly controlled by dendritic RNA-binding proteins. Fragile X Related Protein 1 (FXR1P) is an RNA-binding protein with high homology to Fragile X Mental Retardation Protein (FMRP) and is known to repress and activate mRNA translation in non-neuronal cells. However, unlike FMRP, very little is known about the role of FXR1P in the central nervous system. To understand if FXR1P is positioned to regulate local mRNA translation in dendrites and at synapses, we investigated the expression and targeting of FXR1P in developing hippocampal neurons in vivo and in vitro. We found that FXR1P was highly expressed during hippocampal development and co-localized with ribosomes and mRNAs in the dendrite and at a subset of spines in mouse hippocampal neurons. Our data indicate that FXR1P is properly positioned to control local protein synthesis in the dendrite and at synapses in the central nervous system
- …