306 research outputs found

    Chaoticity without thermalisation in disordered lattices

    Full text link
    We study chaoticity and thermalization in Bose-Einstein condensates in disordered lattices, described by the discrete nonlinear Schr\"odinger equation (DNLS). A symplectic integration method allows us to accurately obtain both the full phase space trajectories and their maximum Lyapunov exponents (mLEs), which characterize their chaoticity. We find that disorder destroys ergodicity by breaking up phase space into subsystems that are effectively disjoint on experimentally relevant timescales, even though energetically, classical localisation cannot occur. This leads us to conclude that the mLE is a very poor ergodicity indicator, since it is not sensitive to the trajectory being confined to a subregion of phase space. The eventual thermalization of a BEC in a disordered lattice cannot be predicted based only on the chaoticity of its phase space trajectory

    Supersolid phases of dipolar bosons in optical lattices with a staggered flux

    Full text link
    We present the theoretical mean-field zero-temperature phase diagram of a Bose-Einstein condensate (BEC) with dipolar interactions loaded into an optical lattice with a staggered flux. Apart from uniform superfluid, checkerboard supersolid and striped supersolid phases, we identify several supersolid phases with staggered vortices, which can be seen as combinations of supersolid phases found in earlier work on dipolar BECs and a staggered-vortex phase found for bosons in optical lattices with staggered flux. By allowing for different phases and densities on each of the four sites of the elementary plaquette, more complex phase patterns are found.Comment: 11 pages; added references, minor changes in tex

    Finite-momentum Bose-Einstein condensates in shaken 2D square optical lattices

    Full text link
    We consider ultracold bosons in a 2D square optical lattice described by the Bose-Hubbard model. In addition, an external time-dependent sinusoidal force is applied to the system, which shakes the lattice along one of the diagonals. The effect of the shaking is to renormalize the nearest-neighbor hopping coefficients, which can be arbitrarily reduced, can vanish, or can even change sign, depending on the shaking parameter. It is therefore necessary to account for higher-order hopping terms, which are renormalized differently by the shaking, and introduce anisotropy into the problem. We show that the competition between these different hopping terms leads to finite-momentum condensates, with a momentum that may be tuned via the strength of the shaking. We calculate the boundaries between the Mott-insulator and the different superfluid phases, and present the time-of-flight images expected to be observed experimentally. Our results open up new possibilities for the realization of bosonic analogs of the FFLO phase describing inhomogeneous superconductivity.Comment: 7 pages, 7 figure

    Pokrovsky-Talapov Model at finite temperature: a renormalization-group analysis

    Full text link
    We calculate the finite-temperature shift of the critical wavevector QcQ_{c} of the Pokrovsky-Talapov model using a renormalization-group analysis. Separating the Hamiltonian into a part that is renormalized and one that is not, we obtain the flow equations for the stiffness and an arbitrary potential. We then specialize to the case of a cosine potential, and compare our results to well-known results for the sine-Gordon model, to which our model reduces in the limit of vanishing driving wavevector Q=0. Our results may be applied to describe the commensurate-incommensurate phase transition in several physical systems and allow for a more realistic comparison with experiments, which are always carried out at a finite temperature

    Liquid-vapor oscillations of water in hydrophobic nanopores

    Full text link
    Water plays a key role in biological membrane transport. In ion channels and water-conducting pores (aquaporins), one dimensional confinement in conjunction with strong surface effects changes the physical behavior of water. In molecular dynamics simulations of water in short (0.8 nm) hydrophobic pores the water density in the pore fluctuates on a nanosecond time scale. In long simulations (460 ns in total) at pore radii ranging from 0.35 nm to 1.0 nm we quantify the kinetics of oscillations between a liquid-filled and a vapor-filled pore. This behavior can be explained as capillary evaporation alternating with capillary condensation, driven by pressure fluctuations in the water outside the pore. The free energy difference between the two states depends linearly on the radius. The free energy landscape shows how a metastable liquid state gradually develops with increasing radius. For radii larger than ca. 0.55 nm it becomes the globally stable state and the vapor state vanishes. One dimensional confinement affects the dynamic behavior of the water molecules and increases the self diffusion by a factor of two to three compared to bulk water. Permeabilities for the narrow pores are of the same order of magnitude as for biological water pores. Water flow is not continuous but occurs in bursts. Our results suggest that simulations aimed at collective phenomena such as hydrophobic effects may require simulation times longer than 50 ns. For water in confined geometries, it is not possible to extrapolate from bulk or short time behavior to longer time scales.Comment: 20 pages, 4 figures, 3 tables; to be published in Proc. Natl. Acad. Sci. US

    Intermittent permeation of cylindrical nanopores by water

    Full text link
    Molecular Dynamics simulations of water molecules in nanometre sized cylindrical channels connecting two reservoirs show that the permeation of water is very sensitive to the channel radius and to electric polarization of the embedding material. At threshold, the permeation is {\emph{intermittent}} on a nanosecond timescale, and strongly enhanced by the presence of an ion inside the channel, providing a possible mechanism for gating. Confined water remains surprisingly fluid and bulk-like. Its behaviour differs strikingly from that of a reference Lennard-Jones fluid, which tends to contract into a highly layered structure inside the channel.Comment: 4 pages, 4 figure

    Atrial Fibrillation in Africa-An Underreported and Unrecognized Risk Factor for Stroke:A Systematic Review

    Get PDF
    Over three-quarters of deaths from cardiovascular disease and diabetes occur in low- and middle-income countries, which include many African countries. Global studies showed that the prevalence of the cardiac arrhythmia atrial fibrillation (AF) appeared to be lower in Africa. A systematic search of PubMed and African Journals Online was conducted to determine the prevalence of AF and associated stroke risk factors in Africa and to quantify the need for screening. The publications search yielded a total of 840 articles of which 41 were included. AF was often not identified as the disease of primary interest with its own risks. Data on prevalence in the general population was scarce. The prevalence of stroke risk factors showed a large variation between studies, as well as within clustered subpopulations. AF in Africa is under-reported in published reports. The study types and populations are highly heterogeneous, making it difficult to draw a definitive conclusion on AF prevalence

    Screening for Atrial Fibrillation in Sub-Saharan Africa:A Health Economic Evaluation to Assess the Feasibility in Nigeria

    Get PDF
    Background: Cardiovascular disease reflects a major burden of non-communicable disease in Sub-Saharan Africa (SSA). Early detection and treatment of atrial fibrillation (AF), as a preventive measure against stroke, is currently not in the scope of the World Health Organization recommendation to reduce cardiovascular disease. Objective: We hypothesized that screening for AF would be an important approach to determine the true AF prevalence in the general population in African countries and to identify asymptomatic AF patients at risk for stroke to optimize prevention. Methods: A decision analytic model was developed to study the health-economic impact of AF screening in Nigeria over a life-time horizon. The patient population explored in the model was a population of newly detected AF cases that would be diagnosed with a one-time systematic screening for AF with a single lead ECG device in community health centres across Nigeria. Conclusions: The health gain per newly detected AF patient (N = 31,687) was 0.41 QALY at a cost of 5,205perpatientwith1005,205 per patient with 100% NOAC use, leading to an ICER of 12,587 per QALY gained. The intervention was cost-effective with a 99.9% warfarin use with an ICER of 1,363perQALYgained.Thetotalcostofasinglescreeningsessionwas1,363 per QALY gained. The total cost of a single screening session was 7.3 million for the total screened population in Nigeria or $1.60 per patient screened. Screening for AF to detect AF patients in need for stroke prevention can be a cost-effective intervention in the Sub-Saharan region, depending on type of anticoagulant used and drug costs
    • …
    corecore