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Abstract. Automatic recognition of in-vehicle activities has significant
impact on the next generation intelligent vehicles. In this paper, we
present a novel Multi-stream Long Short-Term Memory (M-LSTM) net-
work for recognizing driver activities. We bring together ideas from re-
cent works on LSTMs, transfer learning for object detection and body
pose by exploring the use of deep convolutional neural networks (CNN).
Recent work has also shown that representations such as hand-object
interactions are important cues in characterizing human activities. The
proposed M-LSTM integrates these ideas under one framework, where
two streams focus on appearance information with two different levels of
abstractions. The other two streams analyze the contextual information
involving configuration of body parts and body-object interactions. The
proposed contextual descriptor is built to be semantically rich and mean-
ingful, and even when coupled with appearance features it is turned out
to be highly discriminating. We validate this on two challenging datasets
consisting driver activities.

1 Introduction

Recognition and description of human action/activities in videos and images is a
fundamental challenge in computer vision. Over the last two decades, it has been
extensively studied and has generated a rich volume of literature [15,2]. It has
received increasing attention due to far-reaching applications such as intelligent
video surveillance, robotics and AI, human computer interactions, sports anal-
ysis, autonomous and intelligent vehicles. Recognising videos requires analysing
spatio-temporal data, as well as effective processing and representation of visual
and temporal information. Over the years, this representation is dominated by
hand-crafted features such as space-time interest points [23, 22], joint shape and
motion descriptors [39, 4, 24], feature-level relationships [32, 21] and object-hand
interactions [9,13, 3], due to their superior performance. This has been chal-
lenged by the recent advances in Deep Convolutional Neural Network (DCNN)
[11,26,12]. However, extending these networks on video analysis (i.e temporal
data) introduce many new challenges, which are often addressed using temporal
modeling. Recently, Long Short-Term Memory (LSTM), a specialized form of
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Recurrent Neural Network (RNN) is often used to handle temporal data [18].
This is mainly due to the fact that it can encode state, capture temporal or-
dering and long range dependencies. LSTMs combined with CNNs have shown
great performance in video classification tasks [8,27], learning long-term motion
dependencies and spatial-temporal relations [25] and precipitation nowcasting
[42]. However, it increases network complexity that requires training of a very
large number of parameters and tuning many different hyper-parameters. This
could be challenging, especially in real-world applications (e.g. robotics and au-
tonomous vehicles) in which there are constraints on power, processing time,
size, area and weight.

Recently, there is a growing interest to address the above-mentioned problem
via transfer learning (TL), aiming to reduce training time and improve perfor-
mance [43,29]. The initial convolutional layers in deep CNNs produce features
with a surprising level of generality (i.e. useful for most images) [43,29]. This
generality is a key characteristic of TL that influences the initialization of a
target network with layers and trained weights from a base network and is very
effective. However, for video-based human activity recognition, most works focus
on image-based TL but less work has been done on video-based TL and the best
way to do this is still an open question.

In the context of intelligent and (semi-)autonomous vehicles, there is a promi-
nent role of understanding and predicting in-vehicle activities. This would also
allow monitoring driver activity (e.g. use of phone, eating and drinking, etc.)
and readiness for a takeover request (TOR) [20] in AVs, defined by the National
Highway Traffic Safety Administration (NHTSA). This is also a step toward the
eventual implementation of the “cognitive car” [14] and self-learning autonomous
vehicles (AVs) [6] concepts, which are aimed to learn from the in-vehicle activities
to provide a better experience for its occupants and optimize their performance.
In this work, we focus on fine-grained in-vehicle (e.g. driver) activity recogni-
tion. The term fine-grained is similar to the one in [30], aims to distinguish
between activities involving little differences. The driviers’ activity can be seen
as a fine-grained recognition problem (e.g. texting vs talking over phone).

In this paper, we propose a novel deep neural network called Multi-stream
LSTM (M-LSTM) for recognising fine-grained activities. The proposed network
benefits from the TL by using per-frame CNN features from different layers of
available pre-trained CNN models (e.g. VGG16 [34]) as appearance features. We
evaluate our M-LSTM network from one stream upto four streams. Our network
is flexible and if required, it can accommodate more input streams depending
on the target application. The goal is to maximize the use of TL in order to
minimize the training complexity and resources while still achieving competitive
performance on this fine-grained activity recognition task. This work includes
the following novel contributions:

— We demonstrate the effectiveness of our novel Multi-stream LSTM (M-
LSTM) for fine-grained activity recognition task. The network is light-weight
and can be trained using CPU. It is flexible to accommodate more streams.
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— We explore the benefit of TL and validate the significance of context rep-
resented by high-level knowledge involving our novel body pose and body-
object interactions descriptor. The inclusion of context leads to significant
improvements in results. Although LSTMs have been used for action recog-
nition, but in this work we analyze the importance of contextual information
influences the way LSTMs are used.

— We are the first to report the video-based activity recognition using the State
Farm dataset [7] and the “Distracted Driver” dataset [1], which are aimed
to recognise driver’s state/activity. All the existing approaches [16, 1, 36] are
based on the single image classification.

2 Related Works

Video-based human activity recognition has made considerable progress. Tra-
ditional approaches described in [15,2] are based on hand-crafted features. Re-
cently, these hand-crafted features are replaced with the deep features due to
their superior performance. Wang et al [40] replaced the hand-crafted features
with CNN features and stacked optical flow, resulting in improved performance.
Simonyan and Zisserman [34] have used a two-streams network for action recog-
niton in which video frames and stacked optical flow are fed as two separate
streams. In [33], Ryoo et al used pooled feature representation, which gave su-
perior performance using CNN features.

Long Short-Term Memory (LSTM) models have shown great performance
in activity recognition and often used to combine multiple streams of informa-
tion [8,35,44]. Singh et al [35] have shown that combining full image features
with bounding box features improves performance in video classification for fine-
grained actions. Wu et al [41] combine several streams: a spatial CNN fed into an
LSTM, an optical flow CNN fed into a second LSTM, and an audio spectrogram
CNN for video classification. LSTMs have also shown improved performance
over two-streams CNNs in recognising activities [8, 44].

The traditional vision-based in-vehicle activity monitoring approaches are
mostly focused on cues involving driver’s upper-body parts (e.g. face, eye, hand
and head) and their movements [19, 28, 38]. These approaches are often targeted
at automatic detection of safe/unsafe driving behaviors (e.g. drowsiness, fatigue,
distractions, emotions, etc.) using hand-crafted features (e.g. LBP, HOG, Haar-
like) combined with classical machine learning algorithms such as SVM and
AdaBoost. Understanding driver’s activities (e.g. using phone, eating, drinking,
etc.) is vital not only for safe driving but also for the autopilot hand-over pro-
cess for the next generation self-learning AVs. Recently, there has been some
progress in using CNN models in monitoring [1, 16, 36]. However, the adaptation
of the state-of-art CNN models driven by the contextual information is yet to
be explored. In this paper, we aim to address this.

A good progress has been made in recognising activity using latest approaches
such as LSTMs and CNNs. Most of these models are trained on very large
datasets and often requires multiple days, even when GPUs are used. It has
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Fig. 1: Overview of the proposed Multi-stream LSTM (M-LSTM) for driver’s
activity recognition

also been shown that the action recognition performance in still images has
significantly improved by incorporating person-objects interactions [11,26] and
contextual cues such as body pose [12]. These cues are also vital for video-based
activity recognition. Such cues are affiliated to pixel-level and therefore, incorpo-
rating these cues in existing LSTMs and CNNs would result in further increase
in complexity of these models for video-based activity recognition. As a result, it
would be difficult to adapt these models in applications targeted to robotics and
autonomous systems. In this work, we revise these contextual cues and represent
it as a high-level contextual knowledge that encodes body-pose and hand-object
interactions by considering pairwise relationships. These relationships are ex-
trated by exploring the per-frame configuration of the body parts and objects.
This is feasible due to the recent development of the state-of-the-art objects
[17] and body-parts [5] detector to operate in real-time. We also explore the
suggestion in [29] to extract static appearance feature using TL via deep image
classification network such as VGG16 [34]. Here we make the observation that
use of different level of abstractions (i.e. from different layers) is very useful.
We propose a novel Multi-stream LSTM (M-LSTM) which is relatively shallow
(upto 8 layers) to integrate contextual cues, long-term sequence information and
different levels appearance feature to recognize fine-grained activity of a driver.

3 Proposed Activity Recognition Approach

The overview of the proposed framework is shown in Fig.1. The architecture has
three main components: 1) Transferable deep CNN features, 2) contextual cues
involving body pose and body-object interaction and 3) the proposed Multi-
stream LSTM (M-LSTM) for sequence modeling and activity recognition.

3.1 Transferable deep CNN Features

Most of the state-of-the-art deep CNN pre-trained models are publicly available.
These models are trained on a large dataset such as ImageNet [31]. Such models
learn from very general (e.g. Gabor filters, edges, color blobs) to task-specific
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Fig.2: Contextual descriptors capturing body pose and body-objects interac-
tions: a) detected body joints and cup as an object of interest, b) pairwise re-
lations between nose and the rest of the body joints, c) all possible pairwise
relations between detected body joints, and d) pairwise relations between de-
tected cup and various body joints.

features as we move from first-layer to the last-layer [43] and thus, often applied
to new dataset with no/minimal fine-tuning. Therefore, it allows us to leverage
their power for video analysis when using them as feature extractors. We use
VGG16 [34] to extract features at two different extraction points: 1) Block5 (B5)
pooling and 2) FC2 (Fully connected). The aim is to extract appearance features
denoting various level of abstraction to compare their suitability for a given task.

3.2 Contextual Descriptors

In this work, context refers to the representation of high-level knowledge involv-
ing human pose and human-object interactions. Our contextual descriptors are
aimed to represent this knowledge effectively. Human action is often perceived
from the body pose i.e. configuration of body parts in images. This configuration
often provides discriminative appearance cues in differentiating various actions
(e.g. standing vs sitting vs bending). However, many fine-grained non-driving
activities (e.g. texting, talking over phone, eating, drinking, etc.) exhibit simi-
lar body parts configuration. Thus, it is difficult to distinguish them using only
body parts. In such cases, involved objects (e.g. cup, bottle, phone, etc.) and its
interaction with the body parts play a key role in differentiating these activities.
Therefore, we use contextual descriptors to represent relationships between body
parts and objects, as well as between various body parts (Fig. 2).

Body pose descriptor The proposed body pose descriptor translates the body
parts configuration to a feature vector by encoding relationships between various
body parts (Fig. 2¢). We use the state-of-the-art Part Affinity Fields (PAFs) [5],
which can detect the body parts of multiple person in real-time. It gives output
as location (i.e. x,y position in image plane) of 18 body joints: 1) nose, 2) neck,
3) right shoulder, 4) right elbow, 5) right wrist, 6) left shoulder, 7) left elbow, 8)
left wrist, 9) right hip, 10) right knee, 11) right ankle, 12) left hip, 13) left knee,
14) left ankle, 15) right eye, 16) left eye, 17) right ear and 18) left ear. We use the
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upper-body (knee and above) and therefore, 16 joints (except both ankles) are
considered. There are inevitable noises (missing joints and false detection) and
is mainly due to occlusions and contents resulting from driving circumstances
and environmental situations. Therefore, detecting all joints accurately would
be difficult even if one fine-tuned/re-trained the model on the target dataset.
Our goal is to minimize this noise while creating the descriptor and thus, we
consider pairwise relations between all possible detected joints. For example, if
an elbow is noisy (false detection or undetected) then the relationships between
other detected joints (e.g. neck, shoulder, wrist, etc.) would be able to capture

the body pose.

There are 16 joints, resulting 120 (%) possible unique pairs. For each

pair, we compute a relational feature f. Let’s consider a pair of joints j; and js,
located at (z1, y1) and (22, y2), respectively. Their relationship is represented
using distance 7 = /(22 — 21)% + (y2 — y1)? and orientation 6 = arctan(£2=24).
The angle 0 is binned into h number of bins and the magnitude r contributes
to the respective bin(s) where the 6 falls into. As a result, f is sparse and its
dimension is the number of bins h. We apply the Lo normalisation to f. The
process continues for all 120 pairs and concatenate them to represent our pose
descriptor D, = [f1, fa,- -+, f120] of length 120 x h.

Body-object descriptor Similar to the pose descriptor, our body-object de-
scriptor captures the pairwise relationship between the body joints and involved
objects. This relationship encodes the relative position of an object with respect
to a given joint in a scene. Thus, we need to detect the commonly used objects
(e.g. mobile phone, water bottle, cup, etc.). Similar to the body joints, we use
the TL approach for objects detection i.e. using a pre-trained detector on the
target dataset. We benefit from the state-of-the-art deep CNN models, which
have achieved remarkable results. One such model is the combination of Faster
R-CNN with Inception ResNet-V2 [17]. This model is trained on COCO dataset
consisting 330K images, 1.5 million objects instances and 80 object categories.

Our focus is on the object of interest (e.g. phone, bottle, cup, etc.). A common
observation is that the size of these objects is small with respect to the size of
the driver (Fig. 2d) and appears in the vicinity of the driver’s bounding box.
Thus, we use the bounding box information (size and aspect ratio) to select the
objects of interest. We could have selected these based on their types. However,
we noticed that there are noises (e.g. wrongly labeled) in detection and is mainly
due to occlusion by the driver’s hand, as well as the use of TL since the detector
is trained on a different dataset. It is observed that often mobile phones and
coffee mugs are detected as a remote, cup as a wine glass. Our aim is to model
contextual cues (configuration of objects with respect to joints) to discriminate
the fine-grained activities. Thus, we argue that if an object is wrongly labeled,
the combined configuration of body joints and object would provide enough
cues for discriminating various activities. For example, if a phone is labeled as
a mug then based on the arm configuration, its position with respect to other
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Fig.3: a) Proposed relatively shallow (up to 8 layers) Multi-stream LSTM (M-
LSTM) and b) an LSTM memory cell used in this work from [18].

body parts (e.g. torso, head, etc.) and the object’s position with respect to body
parts, would provide cue in discriminating texting vs talking vs drinking.

A total of 25 objects of interest are selected on the target datasets [7,1] by
considering their relative size (area < 1/4th of the driver’s bounding box) and
position (bounding box overlap > 80%) with respect to the driver’s bounding
box. The proposed body-object descriptor (D,) captures the pairwise relation-
ship between 16 body joints and the detected objects. D, encodes this relation-
ship as a histogram of oriented relation f (Fig. 2d), which is computed similar
to the body joints relational feature f (Fig. 2b) in the pose descriptor D,. A
total of 400 (25 x 16) pairwise relations (f... f100) are stacked to represent our
body-object descriptor D, = [fl, fa, o, f4Aoo] of length 400 x h (h angle bins).

3.3 Multi-stream Long Short-Term Memory (M-LSTM) Network

The proposed Multi-stream LSTM (M-LSTM) network for fine-grained activity
recognition is shown in Fig. 3a. The aim is to combine multiple feature types
in order to take the best advantage of data representation with multiple levels
of abstractions and allow the model to learn activities from these representa-
tions. The proposed M-LSTM is inspired by [10]. It is light-weight and consists
of LSTM, Dropout, FC and Softmax layers. The architecture is flexible so that
more input streams could easily be added and takes advantage of off-the-shelf
CNN features, which have shown impressive performance in visual recognition
tasks [29,43]. The inputs consist of per-frame appearance and contextual fea-
tures. The sequential information in the M-LSTM is captured by the two LSTM
layers - one is in individual stream and the other is after the fusion (Fig. 3a).
It should be noted that all our input features are based on transfer learning i.e
CNN features, object and body parts detectors are not trained/fune-tuned on
the target dataset.
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LSTM is a special type of Recurrent Neural Network (RNN). It is capable of
learning long-term dependencies by incorporating memory units that allow the
network to learn, forget previous hidden states and update hidden states, when
required [8]. The M-LSTM network uses the LSTM architecture described in [18]
(Fig. 3b). At a given timestep ¢, the M-LSTM takes input x; = [D}, D}, F{, F3],
consisting body pose D}, body-object interactions DY, and CNN feature F} and
F! extracted from the respective FC2 and Block5 layer of the VGG16 [34]. The
model updates at time ¢ given the memory cells for long-term ¢;_; and short-
term h;_1 recall from the previous timestep ¢t — 1 and is by:

iy = tanh(Wyxe + Whihi—1 + b;)

Je = sigm(Wyjxy + Whjhe—1 + bj)

fi = sigm(Wy gy + Wiyphi—1 + by) (1)
oy = tanh(Waowy + Whohi—1 + by)

ct =ct—1 0 fr +it O Ji

he = tanh(c) © o

Where W, denotes weight matrices, b, biases, ® element-wise vector product,
respectively. The LSTM has two kinds of hidden states: ¢; and h; which allow it
to make complex decisions over a short period of time. It also includes an input
gate i¢, input modulation gate j; contributing to memory, forget gate f;, output
gate oy as a multiplier between the memory gates (Fig. 3b). The gates i; and f;
can be seen as knobs allowing the LSTM to selectively consider its current input
or forgets its previous memory. Similarly, the output gate o; learns how much
memory cell ¢; need to be transferred to the hidden state h;. These additional
memory cells give the ability to learn extremely complex and long-term temporal
dynamics in comparison to the RNN. Moreover, LSTM provides the ability to
remember information and recall it at a later point in time when needed and is
suitable for solving video recognition problems.

4 Experiments, Results and Discussion

We use the State Farm [7] and “Distracted Driver” [1] dataset, comprised of
inwards facing dashboard camera images depicting ten fine-grained activities:
c0) safe driving, c1) texting - right, ¢2) talking on the phone - right, ¢3) texting
- left, c4) talking on the phone - left, ¢5) operating the radio, ¢6) drinking, ¢7)
reaching behind, ¢8) hair and makeup, and c9) talking to passenger.

In the State Farm [7] dataset, there are 260 clips (22,424 images) from 26
drivers (mixture of male and female from different ethnicity). There are 10 clips
(one for each activity) per driver. Similarly, in the “Distracted Driver” dataset
[1], there are 310 clips (17,308 images) from 31 drivers. This dataset has also
10 classes and 10 clips per driver. In our experiment, we uniformly sampled 30
frames per clip. Let’s say there are m number of frames in a given clip and
we wish to sample the desired n = 30 frames by selecting a frame at position
j =0...m — 1 in the original clip, where j =| X2 || for i = 0...n — 1. For

our experiment, 70% (180 videos from 18 drivers in [7] and 220 videos from 22
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drivers in [1]) of the dataset is used for training and the rest 30% (80 and 90 clips
form the rest of the 8 and 9 drivers in [7] and [1], respectively) for validation.
We select this split so that the validation set consists of entirely unseen drivers.

We explore all possible permutations using 4 different features. Our experi-
ments provide multiple outcomes: 1) performance of transferable features from
different layers (B5 pooling and FC2) of VGG16 [34], 2) performance of con-
textual descriptors like body pose and body-object interaction in comparison
to CNN features, 3) the impact on performance using various combinations of
features, and 4) the influence of temporal information (number of frames) on
performance for live monitoring.

We use default image size (224 x 224) for CNN features (B5 and FC2) using
pre-trained VGG16 [34], resulting feature length of 4096 (FC2) and 25088 (B5).
For our contextual descriptors, we have experimented with different number of
bins (h = 6,9, 12 and 18) and found better performance for h = 12, resulting the
size 1440 (120 x 12) and 4800 (400 x 12) for the pose and body-object interaction
descriptor, respectively.

In the proposed M-LSTM, the number of layers, their orders and parame-
ters are selected based on the performance. The final M-LSTM is shown in Fig.
3a. Each clip in the dataset consists of a single activity and therefore, we are
interested in the class probability distribution once M-LSTM has observed the
entire sequence. To achieve this, many approaches exist [44]: (1) using the pre-
diction at the last frame of a given clip; (2) max pooling the predictions over the
entire clip; (3) summing all of the frames predictions over time and returning
the most frequent. We have experimented our model by using approaches (1)
and (2). Using approach (1) i.e. without temporal pooling layer, we have ob-
served the per-frame accuracy, its effect on the number of input frames and the
minimum number of frames required for a good early prediction. The models
are trained using the RMSprop [37] optimizer to minimize the categorical cross
entropy L, = — >, Yv,clog(Dy ), where p are the predictions, y are the targets, v
denotes the training video and ¢ denotes the class. One-stream model is trained
using a learning rate (Ir) of 2 x 1075; two-, three- and four-streams of 5 x 1075,
with all other parameters are assigned with default values. A Linux PC (Intel
i7-5930K, 12 cores, 3.5 GHZ) with NVIDIA Quadro P6000 24GB GPU is used
for our experiments. The models are trained for 50 epochs with a batch size of
32. Training time of each model is just under 20 minutes. The same training
takes around 2:37h using CPU, which is still a viable option.

For evaluation, we use accuracy (ACC) and average precision (AP). ACC
assigns equal cost to false positives and false negatives. Whereas, AP summa-
rizes precision-recall curve. We also compute multi-class log loss logLoss =
—% Y w2 Yu,clog(py.c), where v represents test videos, ¢ denotes activity la-
bels, p implies predictions and y denotes targets. It quantifies the accuracy of a
classifier by penalizing confident false classifications. For example, if a classifier
assigns a very small probability to a correct class then the corresponding con-
tribution to the log loss will be very large. An ideal classifier will have zero log
loss. The performance of the M-LSTM is shown in Table 1. There are four sets



10 A. Behera, A. Keidel and B. Debnath

Table 1: Performance of the proposed M-LSTM: from one-stream to four-streams
using State Farm [7] (left column) and “Distracted Driver” [1]. The performance
is the argmaz of the output from the softmax layer. All values are in percentages
except for the log loss. Lower value of the log loss is better. The best performance
is shown in bold for a given dataset with one or more input streams
ACC AP Log Loss “ ACC AP Log Loss
State Farm [7] dataset — Distracted Driver [1] dataset

One-stream

Pose 48.75 60.00 5.61 12.22 12.20 2.25
FC2 52.50 72.50 2.70 30.00 34.18 2.44
Object 61.25 75.25 3.06 42.22 44.23 2.40
B5 77.50 85.00 1.32 38.89 47.46 1.94
Two-streams

FC2+Pose 60.00 77.50 2.23 34.44 3849 2.38
Pose+Object 61.25 73.75 5.01 44.44 48.64 4.00
B5+4Pose 81.25 91.25 1.05 34.44 43.51 2.02
FC2+4-B5 81.25 88.75 0.99 36.67 49.23 1.88
FC2+0Object 77.50 81.25 1.10 41.11 54.69 1.87
B5+0bject 85.00 90.00 0.69 43.33 53.16  1.97
Three-streams

FC2+Pose+Object 76.25 88.75 1.68 47.78 57.68 2.08
FC2+-B5+Pose 78.75 87.50 1.16 34.44  40.22 2.28
FC2+B5+0bject 86.25 96.25 0.51 46.67 52.83 1.75
B5+Pose+Object 87.50 96.25 0.62 52.22 59.66 1.66
Four-streams

FC2+B5+Pose+Object  91.25  95.00 045 || 37.78 53.11 1.72

of rows representing the performance of one-stream to the four-streams. The left
column is for the State Farm dataset [7] and the right column is for the “Dis-
tracted Driver” [1] dataset. The given performance is based on our proposed
M-LSTM without temporal pooling in Fig. 3a. The performance is measured as
the argmax of the final softmax layer. The best performance is shown as bold
within a given set. It is clear that as we add more streams the performance
improves in both the datasets.

Performance on State Farm dataset [7] For CNN features (FC2 and B5),
the ACC of B5 is 25% better than the FC2 (Table 1, left column). In [29], CNN
feature from FC layer is used for the visual recognition task. This shows the CNN
features are dependent on the target dataset type and more than one extraction
point should be considered while using transfer learning. Moreover, when we
combine features from multiple extraction points (FC2+4B5), the performance is
better than the single ones. When our contextual information (body pose and
body-object interactions) is added, the ACC increase by 10% (B5+Pose+Object)
in comparison to the B5 alone. Similarly, adding this information to FC2, the per-
formance increased by 33.75% and this explains the significance of our high-level
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Fig. 4: Confusion matrices for one-stream to four-streams based on B5.

contextual descriptors. Our model gives the best performance (ACC: 91.25%),
when all four-streams are used. The confusion matrix for one-stream to four-
streams using the B5, is shown in Fig. 4. If we compare the one-stream (Fig.
4a) with four-streams (Fig. 4d), the performance of most of the activities is im-
proved or same except the activity c0 - safe driving and cl - texting right. The
c0 is confused with cl. This could be due to both c0 (both hand on steering)
and cl exhibit similar body pose and the cell phone is often occluded because
of the dashboard camera position. The four-streams performance of activity c3 -
texting - left drops by 12% in comparison to the three-streams model (Fig. 4d vs
4c). This 12% is confused with the c4 - talking on the phone - left. This is mainly
due to one of the subject’s left hand is close to the head while texting and based
on the subject’s pose and phone position with respect to the body, the model
recognized as talking left and could be the influence of contextual information.
Whereas, using B5, the model recognises this one correctly (Fig. 4a).

Performance on Distracted Driver dataset [1] The performance of the
proposed approach using the “Distracted Driver” dataset [1] is presented in Table
1 (right column). Similar to the State Farm [7], the performance increases as we
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Fig.5: Activity recognition performance (average over 8 drivers and each with
10 activity classes) for one-stream to four-streams based on B5. The proposed
M-LSTM model’s ACC (a) and AP (b) over the model’s memory duration in
frames using the State Farm dataset [7].

add more streams. However, the overall performance is quite low in comparison
to the State Farm [7]. This could be due to the fact that the data in [1] was
being collected from seven different countries in four different cars with several
variations in driving conditions. Whereas, State Farm [7] data was collected
using one car in a controlled environment i.e. a truck dragging the car around
on the streets - so the drivers weren’t really driving.

In one-stream, the standout performance (ACC: 42.22%) is our contextual
descriptor using body-object interactions (Table 1, right column). When this de-
scriptor is combined with others, the overall performance is improved (B5+Object:
43.33%, Pose+Object: 44.44% and FC2+object: 41.11%). This demonstrates the
significance of our proposed context-driven model. The best performance on
this dataset is the combination of three streams i.e. B5+Pose+Object (ACC:
52.22%). When the fourth stream FC2 is integrated to it, the performance
dropped to 37.78%. Therefore, the FC2 feature is not as good as the B5. A
similar trend was observed in the State Farm [7] dataset as well.

Performance using temporal pooling layer We have experimented with
the use of temporal pooling (max pooling) layer. This temporal pooling layer
is added after the last LSTM layer (Fig. 3a), replacing the dropout layer. The
performance is presented in Table 2 for the State Farm [7] dataset. Most of the
time, the M-LSTM performs better without the temporal pooling (Table 1). The
other notable observation is the log loss using max pooling. The performance is
better (lower is better) than without the max pooling, except in the four-streams
model. This implies the M-LSTM is more confident (high probability) in making
right decision, when max pooling layer is used.
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Table 2: Performance of the M-LSTM: from one-stream to four-streams with
temporal pooling (max pooling), evaluated on the State Farm [7] dataset. All
the values are in percentage except for the log loss. The best performance is
shown in bold for a given combination(s) of input stream(s)

M-LSTM with max pooling using State Farm [7] dataset

ACC AP Loss “ ACC AP Loss

One-stream Two-streams

Pose 35.00 55.00 2.23 FC2+Pose 62.50 82.50 1.31

FC2 51.25 71.25 1.96 Pose+Object 56.25 72.50 1.72

Object 55.00 72.50 1.64 B5+Pose 75.00 80.00 0.85

B5 60.00 80.00 1.19 FC2+B5 75.00 87.50 0.88
FC2+Object 78.75 86.25 0.92
B5+Object 81.25 92.50 0.53

Three-streams Four-streams

FC2+Pose+0Obj 76.25 88.75 0.91

FC2+B5+Pose 75.00 87.50 0.76 FC2+B5+ 87.50 95.00 0.50

FC2+B5+0bj 83.75 95.00 0.49 Pose+Object

B5+Pose+0Dbj 86.25 91.25 0.52

M-LSTM memory duration We have also looked into the M-LSTM memory
duration with respect to the number of frames. The ACC and AP for one-
stream to four-streams using the State Farm dataset [7] with memory of 1 to
30 frames is shown in the Fig. 5a and Fig. 5b, respectively. The ACC using
B5 (Fig. 5a) increases with the number of frames (still upward at frame 30).
This means the M-LSTM needs more evidence for making the correct decision.
Whereas, with contextual information (B5+pose4object), the accuracy reaches
close to the maximum around frame 10. This shows our contextual information is
semantically rich and meaningful to recognise activities with partial information
(less number of frames). Therefore, the proposed M-LSTM could be used for live
monitoring of the activities from partial observations. The accuracy of individual
class using all four streams is shown in Fig. 6.

Performance comparison with state-of-the-art As mentioned earlier, we
are the first to report video-based activity recognition on these datasets [7,1].
The existing approaches [16,1,36] were evaluated using still images. For still
images, Hssayeni et al [16] reported the accuracy of 85% using State Farm [7]
and Abouelnaga et al [1] has achieved accuracy of 95.17% using their “Distracted
Driver” dataset. However, [1] has used the validation images from the seen drivers
i.e. for a given driver and activity, part of the video frames used in training and
the rest for testing. In our experiments, we use entirely unseen drivers for testing.

5 Conclusion

We have developed a Multi-stream LSTM (M-LSTM) network for recognizing
fine-grained activities of drivers. The network is light-weight and flexible to ac-
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Fig. 6: Individual activity performance (average accuracy over 8 drivers) of our
M-LSTM over the model’s memory duration in frames. The accuracy using four-
streams (B5+Pose+Object+FC2): the solid line is the predicted activity and the
dotted lines are the rest of the activities using the State Farm dataset [7].

commodate one or more input streams. We demonstrated how our proposed
network learns to recognize fine-grained activities by exploring transfer learning
and combining features with different levels of abstractions, as well as contextual
features involving body pose and body-objects interactions. We further analyzes
the suitability of the M-LSTM for activity recognition from partial observation.
We believe this will help advance the field of in-vehicle activity recognition.

Acknowledgments: The research is supported by the Edge Hill University’s
Research Investment Fund (RIF). We would like to thank Taylor Smith in State
Farm Corporation for providing information about their dataset. The GPU used
in this research is generously donated by the NVIDIA Corporation.



Context-driven M-LSTM for Recognizing Fine-Grained Activity of Drivers 15

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Abouelnaga, Y., Eraqi, H.M., Moustafa, M.N.: Real-time distracted driver posture
classification. arXiv preprint arXiv:1706.09498 (2017)

Aggarwal, J., Ryoo, M.: Human activity analysis: A review. ACM Comput. Surv.
43(3), 16:1-16:43 (Apr 2011)

Behera, A., Hogg, D.C., Cohn, A.G.: Egocentric activity monitoring and recovery.
In: ACCV (2012)

Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as space-time
shapes. In: ICCV. pp. 1395-1402 (2005)

Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2d pose estimation
using part affinity fields. In: IEEE CVPR (2017)

Carsten, O.: From Driver Models to Modelling the Driver: What Do We Really
Need to Know About the Driver?, pp. 105-120. Springer London, London (2007)
Corporate, S.: State farm  distracted driver  detection  (2016),
https://www.kaggle.com/c/state-farm-distracted-driver-detection

Donahue, J., Hendricks, L.A., Rohrbach, M., Venugopalan, S., Guadarrama, S.,
Saenko, K., Darrell, T.: Long-term recurrent convolutional networks for visual
recognition and description. IEEE Trans. PAMI 39(4), 677691 (April 2017)
Fathi, A., Farhadi, A., Rehg, J.M.: Understanding egocentric activities. In: ICCV
(2011)

Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fu-
sion for video action recognition. In: IEEE CVPR. pp. 1933-1941 (2016)
Girdhar, R., Ramanan, D.: Attentional pooling for action recognition. In: Advances
in NIPS. pp. 33—44 (2017)

Gkioxari, G., Girshick, R., Malik, J.: Contextual action recognition with r*cnn. In:
ICCV. pp. 1080-1088 (2015)

Gupta, A., Davis, L.S.: Objects in action: An approach for combining action un-
derstanding and object perception. In: CVPR (2007)

Heide, A., Henning, K.: The cognitive car: A roadmap for research issues in the
automotive sector. Annual Reviews in Control 30(2), 197 — 203 (2006)

Herath, S., Harandi, M., Porikli, F.: Going deeper into action recognition: A survey.
Image and Vision Computing 60, 4 — 21 (2017)

Hssayeni, M., Saxena, S., Ptucha, R., Savakis, A.: Distracted driver detection: Deep
learning vs handcrafted features. Electronic Imaging (10), 20-26 (2017)

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I.,
Wojna, Z., Song, Y., Guadarrama, S., Murphy, K.: Speed/accuracy trade-offs for
modern convolutional object detectors. In: IEEE CVPR. pp. 3296-3297 (2017)
Jozefowicz, R., Zaremba, W., Sutskever, I.: An empirical exploration of recurrent
network architectures. In: ICML. pp. 2342-2350 (2015)

Kaplan, S., Guvensan, M.A., Yavuz, A.G., Karalurt, Y.: Driver behavior analysis
for safe driving: A survey. IEEE Trans. on Intel. Transp. Syst. 16(6), 3017-3032
(Dec 2015). https://doi.org/10.1109/TTTS.2015.2462084

Kim, H.J., Yang, J.H.: Takeover requests in simulated partially autonomous ve-
hicles considering human factors. IEEE Trans. on Human-Machine Syst. 47(5),
735-740 (Oct 2017). https://doi.org/10.1109/THMS.2017.2674998

Kovashka, A., Grauman, K.: Learning a hierarchy of discriminative space-time
neighborhood features for human action recognition. In: IEEE CVPR (2010)
Laptev, L., Lindeberg, T.: Space-time interest points. In: ICCV. pp. 432-439 (2003)



16

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

A. Behera, A. Keidel and B. Debnath

Laptev, 1., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human
actions from movies. In: CVPR (2008)

Liu, J., Luo, J., Shah, M.: Recognizing realistic actions from videos “in the wild”.
In: IEEE CVPR. pp. 1996-2003 (2009)

Luo, Z., Peng, B., Huang, D.A., Alahi, A., Fei-Fei, L.: Unsupervised learning of
long-term motion dynamics for videos. arXiv preprint arXiv:1701.01821 2 (2017)
Mallya, A., Lazebnik, S.: Learning models for actions and person-object interac-
tions with transfer to question answering. In: ECCV. pp. 414-428 (2016)

Ng, J.Y.H., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R.,
Toderici, G.: Beyond short snippets: Deep networks for video classification. In:
CVPR (2015)

Ranft, B., Stiller, C.: The role of machine vision for intelligent vehicles. IEEE Trans.
on Intel. Vehicles 1(1), 8-19 (2016). https://doi.org/10.1109/TIV.2016.2551553
Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: Cnn features off-the-shelf:
An astounding baseline for recognition. In: IEEE CVPRW. pp. 512-519 (2014)
Rohrbach, M., Amin, S.; Andriluka, M., Schiele, B.: A database for fine grained
activity detection of cooking activities. In: IEEE CVPR. pp. 1194-1201 (June 2012)
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large
Scale Visual Recognition Challenge. IJCV 115(3), 211-252 (2015)

Ryoo, M.S., Aggarwal, J.K.: Spatio-temporal relationship match: Video structure
comparison for recognition of complex human activities. In: ICCV (2009)

Ryoo, M.S., Rothrock, B., Matthies, L.H.: Pooled motion features for first-person
videos. In: IEEE CVPR (2014)

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

Singh, B., Marks, T.K., Jones, M., Tuzel, O., Shao, M.: A multi-stream bi-
directional recurrent neural network for fine-grained action detection. In: IEEE
CVPR. pp. 1961-1970 (2016)

Singh, D.: Using convolutional neural networks to perform classification on state
farm insurance driver images. Tech. rep., Stanford University, Stanford, CA (2016)
Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learn-
ing 4(2), 26-31 (2012)

Trivedi, M.M., Gandhi, T., McCall, J.: Looking-in and looking-out of a vehicle:
Computer-vision-based enhanced vehicle safety. IEEE Trans. on Intel. Transp.
Syst. 8(1), 108-120 (March 2007). https://doi.org/10.1109/TTITS.2006.889442
Wang, H., Klaser, A., Schmid, C., Liu, C.L.: Dense trajectories and motion bound-
ary descriptors for action recognition. IJCV 103(1), 60-79 (May 2013)

Wang, L., Qiao, Y., Tang, X.: Action recognition with trajectory-pooled deep-
convolutional descriptors. In: IEEE CVPR (2015)

Wu, Z., Jiang, Y.G., Wang, X., Ye, H., Xue, X., Wang, J.: Fusing multi-stream
deep networks for video classification. arXiv preprint arXiv:1509.06086 (2015)
Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.c.: Convo-
lutional Istm network: A machine learning approach for precipitation nowcasting.
In: Advances in NIPS. pp. 802-810 (2015)

Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in
deep neural networks? In: NIPS. pp. 3320-3328 (2014)

Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R.,
Toderici, G.: Beyond short snippets: Deep networks for video classification. In:
IEEE CVPR. pp. 4694-4702 (2015)



