2,005 research outputs found

    Elucidating the NuclearQuantum Dynamics of Intramolecular Double Hydrogen Transfer in Porphycene

    Get PDF
    We address the double hydrogen transfer (DHT) dynamics of the porphycene molecule: A complex paradigmatic system where the making and breaking of H-bonds in a highly anharmonic potential energy surface requires a quantum mechanical treatment not only of the electrons, but also of the nuclei. We combine density-functional theory calculations, employing hybrid functionals and van der Waals corrections, with recently proposed and optimized path-integral ring-polymer methods for the approximation of quantum vibrational spectra and reaction rates. Our full-dimensional ring-polymer instanton simulations show that below 100 K the concerted DHT tunneling pathway dominates, but between 100 K and 300 K there is a competition between concerted and stepwise pathways when nuclear quantum effects are included. We obtain ground-state reaction rates of 2.19×1011s12.19 \times 10^{11} \mathrm{s}^{-1} at 150 K and 0.63×1011s10.63 \times 10^{11} \mathrm{s}^{-1} at 100 K, in good agreement with experiment. We also reproduce the puzzling N-H stretching band of porphycene with very good accuracy from thermostatted ring-polymer molecular dynamics simulations. The position and lineshape of this peak, centered at around 2600 cm1^{-1} and spanning 750 cm1^{-1}, stems from a combination of very strong H-bonds, the coupling to low-frequency modes, and the access to ciscis-like isomeric conformations, which cannot be appropriately captured with classical-nuclei dynamics. These results verify the appropriateness of our general theoretical approach and provide a framework for a deeper physical understanding of hydrogen transfer dynamics in complex systems

    Electro-spinon in one-dimensional Mott insulator

    Full text link
    The low-energy dynamical optical response of dimerized and undimerized spin liquid states in a one-dimensional charge transfer Mott insulator is theoretically studied. An exact analysis is given for the low-energy asymptotic behavior using conformal field theory for the undimerized state. In the dimerized state, the infrared absorption due to the bound state of two solitons, i.e, the breather mode, is predicted with an accurate estimate for its oscillator strength, offering a way to detect experimentally the excited singlet state. Effects of external magnetic fields are also discussed.Comment: 5 pages, 2 figures, some typos are correcte

    Stochastic Interactions of Two Brownian Hard Spheres in the Presence of Depletants

    Full text link
    A quantitative analysis is presented for the stochastic interactions of a pair of Brownian hard spheres in non-adsorbing polymer solutions. The hard spheres are hypothetically trapped by optical tweezers and allowed for random motion near the trapped positions. The investigation focuses on the long-time correlated Brownian motion. The mobility tensor altered by the polymer depletion effect is computed by the boundary integral method, and the corresponding random displacement is determined by the fluctuation-dissipation theorem. From our computations it follows that the presence of depletion layers around the hard spheres has a significant effect on the hydrodynamic interactions and particle dynamics as compared to pure solvent and pure polymer solution (no depletion) cases. The probability distribution functions of random walks of the two interacting hard spheres that are trapped clearly shifts due to the polymer depletion effect. The results show that the reduction of the viscosity in the depletion layers around the spheres and the entropic force due to the overlapping of depletion zones have a significant influence on the correlated Brownian interactions.Comment: 30 pages, 9 figures, 1 appendix, 40 formulas inside the text, 5 formulas in appendi

    Competing Fractional Quantum Hall and Electron Solid Phases in Graphene

    Full text link
    We report experimental observation of the reentrant integer quantum Hall effect in graphene, appearing in the N==2 Landau level. Similar to high-mobility GaAs/AlGaAs heterostructures, the effect is due to a competition between incompressible fractional quantum Hall states, and electron solid phases. The tunability of graphene allows us to measure the BB-TT phase diagram of the electron-solid phase. The hierarchy of reentrant states suggest spin and valley degrees of freedom play a role in determining the ground state energy. We find that the melting temperature scales with magnetic field, and construct a phase diagram of the electron liquid-solid transition

    On the Mechanism of BaSi2 Thin Film Formation on Si Substrate by Vacuum Evaporation

    Get PDF
    AbstractWe report on the formation mechanism of BaSi2 thin film on Si substrate grown by vacuum evaporation using BaSi2 granules as source materials. Since the vapor flux at the initial stage of evaporation is known to be Ba-rich, Si supply from the substrate is of crucial importance to obtain homogeneous BaSi2 thin film. In fact, low substrate temperature and/or thick film deposition led to formation of rough film with voids, and the oxidation proceeded upon exposure to air. We revealed that appropriate choice of substrate temperature, film thickness, and post-growth in-situ annealing can provide enough diffusion of Si and Ba, leading to realization of homogeneous BaSi2 thin film

    Measuring context dependency in birdsong using artificial neural networks

    Get PDF
    Context dependency is a key feature in sequential structures of human language, which requires reference between words far apart in the produced sequence. Assessing how long the past context has an effect on the current status provides crucial information to understand the mechanism for complex sequential behaviors. Birdsongs serve as a representative model for studying the context dependency in sequential signals produced by non-human animals, while previous reports were upper-bounded by methodological limitations. Here, we newly estimated the context dependency in birdsongs in a more scalable way using a modern neural-network-based language model whose accessible context length is sufficiently long. The detected context dependency was beyond the order of traditional Markovian models of birdsong, but was consistent with previous experimental investigations. We also studied the relation between the assumed/auto-detected vocabulary size of birdsong (i.e., fine- vs. coarse-grained syllable classifications) and the context dependency. It turned out that the larger vocabulary (or the more fine-grained classification) is assumed, the shorter context dependency is detected

    Nanoscale imaging of equilibrium quantum Hall edge currents and of the magnetic monopole response in graphene

    Full text link
    The recently predicted topological magnetoelectric effect and the response to an electric charge that mimics an induced mirror magnetic monopole are fundamental attributes of topological states of matter with broken time reversal symmetry. Using a SQUID-on-tip, acting simultaneously as a tunable scanning electric charge and as ultrasensitive nanoscale magnetometer, we induce and directly image the microscopic currents generating the magnetic monopole response in a graphene quantum Hall electron system. We find a rich and complex nonlinear behavior governed by coexistence of topological and nontopological equilibrium currents that is not captured by the monopole models. Furthermore, by utilizing a tuning fork that induces nanoscale vibrations of the SQUID-on-tip, we directly image the equilibrium currents of individual quantum Hall edge states for the first time. We reveal that the edge states that are commonly assumed to carry only a chiral downstream current, in fact carry a pair of counterpropagating currents, in which the topological downstream current in the incompressible region is always counterbalanced by heretofore unobserved nontopological upstream current flowing in the adjacent compressible region. The intricate patterns of the counterpropagating equilibrium-state orbital currents provide new insights into the microscopic origins of the topological and nontopological charge and energy flow in quantum Hall systems

    Breakdown of a Mott insulator -- non-adiabatic tunneling mechanism

    Full text link
    Time-dependent nonequilibrium properties of a strongly correlated electron system driven by large electric fields is obtained by means of solving the time-dependent Schr\"odinger equation for the many-body wave function numerically in one dimension. While the insulator-to-metal transition depends on the electric field and the interaction, the metallization is found to be described in terms of a universal Landau-Zener quantum tunneling among the many-body levels. These processes induces current oscillation for small systems, while give rise to finite resistivity through dissipation for larger systems/on longer time scales.Comment: 5 pages, 5 figures, version to appear in Phys.Rev.Let

    Autonomous Agent for Beyond Visual Range Air Combat: A Deep Reinforcement Learning Approach

    Full text link
    This work contributes to developing an agent based on deep reinforcement learning capable of acting in a beyond visual range (BVR) air combat simulation environment. The paper presents an overview of building an agent representing a high-performance fighter aircraft that can learn and improve its role in BVR combat over time based on rewards calculated using operational metrics. Also, through self-play experiments, it expects to generate new air combat tactics never seen before. Finally, we hope to examine a real pilot's ability, using virtual simulation, to interact in the same environment with the trained agent and compare their performances. This research will contribute to the air combat training context by developing agents that can interact with real pilots to improve their performances in air defense missions
    corecore