1,844 research outputs found
Magnetic excitations in vanadium spinels
We study magnetic excitations in vanadium spinel oxides AVO (A=Zn,
Mg, Cd) using two models: first one is a superexchange model for vanadium S=1
spins, second one includes in addition spin-orbit coupling, and crystal
anisotropy. We show that the experimentally observed magnetic ordering can be
obtained in both models, however the orbital ordering is different with and
without spin-orbit coupling and crystal anisotropy. We demonstrate that this
difference strongly affects the spin-wave excitation spectrum above the
magnetically ordered state, and argue that the neutron measurement of such
dispersion is a way to distinguish between the two possible orbital orderings
in AVO.Comment: accepted in Phys. Rev.
Soil Testing for Agronomic and Environmental Uses
Soil testing is a program that includes taking samples from a field or site, performing a laboratory analysis, and making recommendations for lime and crop nutrients. Good results from this program depend on several supporting factors: (I) obtaining samples representative of the soil in a field area or site; (2) using good techniques in the laboratory that give accurate indications of the nutrient status of the sampled area; and (3) having an extensive data base for making lime and nutrient recommendations from the analytical results
Spin excitations used to probe the nature of the exchange coupling in the magnetically ordered ground state of PrCaMnO
We have used time-of-flight inelastic neutron scattering to measure the spin
wave spectrum of the canonical half-doped manganite
PrCaMnO, in its magnetic and orbitally ordered phase. The
data, which cover multiple Brillouin zones and the entire energy range of the
excitations, are compared with several different models that are all consistent
with the CE-type magnetic order, but arise through different exchange coupling
schemes. The Goodenough model, i.e. an ordered state comprising strong nearest
neighbor ferromagnetic interactions along zig-zag chains with antiferromagnetic
inter-chain coupling, provides the best description of the data, provided that
further neighbor interactions along the chains are included. We are able to
rule out a coupling scheme involving formation of strongly bound ferromagnetic
dimers, i.e. Zener polarons, on the basis of gross features of the observed
spin wave spectrum. A model with weaker dimerization reproduces the observed
dispersion but can be ruled out on the basis of discrepancies between the
calculated and observed structure factors at certain positions in reciprocal
space. Adding further neighbor interactions results in almost no dimerization,
i.e. recovery of the Goodenough model. These results are consistent with
theoretical analysis of the degenerate double exchange model for half-doping,
and provide a recipe for how to interpret future measurements away from
half-doping, where degenerate double exchange models predict more complex
ground states.Comment: 14 pages, 11 figure
Recommended from our members
A Modified Stacking Ensemble Machine Learning Algorithm Using Genetic Algorithms
With the massive increase in the data being collected as a result of ubiquitous information gathering devices, and the increased need for doing data mining and analyses, there is a need for scaling up and improving the performance of traditional data mining and learning algorithms. Two related fields of distributed data mining and ensemble learning aim to address this scaling issue. Distributed data mining looks at how data that is distributed can be effectively mined without having to collect the data at one central location. Ensemble learning techniques aim to create a meta-classifier by combining several classifiers created on the same data and improve their performance. In this paper we use concepts from both of these fields to create a modified and improved version of the standard stacking ensemble learning technique by using a genetic algorithm (GA) for creating the meta-classifier. We use concepts from distributed data mining to study different ways of distributing the data and use the concept of stacking ensemble learning to use different learning algorithms on each sub-set and create a meta-classifier using a genetic algorithm. We test the GA-based stacking algorithm on ten data sets from the UCI Data Repository and show the improvement in performance over the individual learning algorithms as well as over the standard stacking algorithm
Magnetic properties of -FeCr alloy as calculated with the charge and spin self-consistent KKR(CPA) method
Magnetic properties of a FeCr alloy calculated with
the charge and spin self- consistent Korringa-Kohn-Rostoker (KKR) and combined
with coherent potential approximation (KKR-CPA) methods are reported.
Non-magnetic state as well as various magnetic orderings were considered, i.e.
ferromagnetic (FM) and more complex anti-parallel (called APM) arrangements for
selected sublattices, as follows from the symmetry analysis. It has been shown
that the Stoner criterion applied to non-magnetic density of states at the
Fermi energy, is satisfied for Fe atoms situated on all five lattice
sites, while it is not fulfilled for all Cr atoms. In FM and APM states, the
values of magnetic moments on Fe atoms occupying various sites are dispersed
between 0 and 2.5 , and they are proportional to the number of Fe atoms
in the nearest-neighbor shell. Magnetic moments of Cr atoms havin much smaller
values were found to be coupled antiparallel to those of Fe atoms. The average
value of the magnetic moment per atom was found to be that
is by a factor of 4 larger than the experimental value found for a
FeCr sample. Conversely, admitting an anti-
parallel ordering (APM model) on atoms situated on C and D sites, according to
the group theory and symmetry analysis results, yielded a substantial reduction
of to 0.20 $\mu_B$. Further diminution of to 0.15 ,
which is very close to the experimental value of 0.14 , has been
achieved with the KKR-CPA calculations by considering a chemical disorder on
sites B, C and D
Strong out-of-plane magnetic anisotropy of Fe adatoms on BiTe
The electronic and magnetic properties of individual Fe atoms adsorbed on the
surface of the topological insulator BiTe(111) are investigated.
Scanning tunneling microscopy and spectroscopy prove the existence of two
distinct types of Fe species, while our first-principles calculations assign
them to Fe adatoms in the hcp and fcc hollow sites. The combination of x-ray
magnetic circular dichroism measurements and angular dependent magnetization
curves reveals out-of-plane anisotropies for both species with anisotropy
constants of meV/atom and meV/atom. These values are well in line with the results of
calculations.Comment: 6 pages, 3 figure
Evidence for Paleolake Rawtenstall around Stacksteads, Upper Irwell Valley, Rossendale, U.K.
This paper presents new geomorphological and sedimentological evidence relating to the glaciation of the Upper Rossendale Valley, northwest England. We identify a previously unrecognised esker and associated glaciofluvial deposits within the valley, using high-resolution hillshaded Digital Terrain Models (DTMs) constructed using LiDAR data. A temporary exposure in a subaqueous outwash fan indicates the operation of an efflux jet from a conduit exiting an ice margin in the vicinity of theThrutch (Stacksteads) Gorge. We propose that the gorge was formed primarily by incision due to the drainage of the ice-dammed paleolake Rawtenstall during a previous glacial phase, but later operated as a subglacial meltwater channel after a local readvance of ice during the last Glacial Termination. A similar approach in other areas is likely to improve our detailed understanding of glaciation in the North West
- …