41 research outputs found

    Bio-inspired geotechnical engineering: principles, current work, opportunities and challenges

    Get PDF
    A broad diversity of biological organisms and systems interact with soil in ways that facilitate their growth and survival. These interactions are made possible by strategies that enable organisms to accomplish functions that can be analogous to those required in geotechnical engineering systems. Examples include anchorage in soft and weak ground, penetration into hard and stiff subsurface materials and movement in loose sand. Since the biological strategies have been ‘vetted’ by the process of natural selection, and the functions they accomplish are governed by the same physical laws in both the natural and engineered environments, they represent a unique source of principles and design ideas for addressing geotechnical challenges. Prior to implementation as engineering solutions, however, the differences in spatial and temporal scales and material properties between the biological environment and engineered system must be addressed. Current bio-inspired geotechnics research is addressing topics such as soil excavation and penetration, soil–structure interface shearing, load transfer between foundation and anchorage elements and soils, and mass and thermal transport, having gained inspiration from organisms such as worms, clams, ants, termites, fish, snakes and plant roots. This work highlights the potential benefits to both geotechnical engineering through new or improved solutions and biology through understanding of mechanisms as a result of cross-disciplinary interactions and collaborations

    6-Hydroxy-3-O-methyl-kaempferol 6-O-glucopyranoside potentiates the anti-proliferative effect of interferon alpha/beta by promoting activation of the JAK/STAT signaling by inhibiting SOCS3 in hepatocellular carcinoma cells

    No full text
    Suppressor of cytokine signaling 3 (SOCS3) is a key negative regulator of type I interferon (IFN alpha/beta) signaling. Inhibition of SOCS3 by small molecules may be a new strategy to enhance the efficacy of type I IFN and reduce its side effects. We established a cell-based screening assay using human hepatoma HepG2 cells stably transfected with a plasmid wherein the luciferase reporter activity was propelled by interferon alpha-stimulated response element (ISRE), which is a motif specifically recognized by type I IFN-induced activation of Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. After screening our chemical library, 6-hydroxy-3-O-methyl-kaempferol 6-O-glucopyranoside (K6G) was identified to be a potent activator of type I IFN with EC50 value of 3.33 +/- 0.04 mu M. K6G enhanced the phosphorylation of JAK1, Tyk2, and STAT1/2 but decreased the phosphorylation of STAT3. K6G also promoted endogenous IFN-alpha-regulated genes expression. More interestingly, K6G significantly decreased the expression of SOCS3 without affecting the expression of SOCS1. Furthermore, K6G enhanced the anti-proliferative effect of IFN-alpha on hepatocellular carcinoma (HCC) cells. These results suggested that K6G potentiated the inhibitory effect of IFN-alpha on HCC cell proliferation through activation of the JAK/STAT signaling pathway by inhibiting SOCS3 expression. K6G warrants further investigation as a novel therapeutic method to enhance the efficacy of IFN-alpha/beta
    corecore