5,933 research outputs found

    VEILING LAWS AND AFFILIATED PROTESTS IN IRAN

    Get PDF
    Veiling laws in Iran are the obligation for women to wear hijabs or headscarves and are based on Muslim religious beliefs that women must cover their head to remain modest and submit themselves to God.1 The Quran is not explicit on the topic of hijabs or headscarves and, as a result, some followers interpret it as a personal preference and others interpret it as a requirement.2 Iran’s veiling laws have been the topic of great scrutiny due to a horrific event that occurred on September 13, 2022, where a young woman, Mahsa Amini, was accused by the police of improperly wearing a headscarf.3 This led to her being arrested and beaten so brutally that she slipped into a coma and died only a couple days later.4 Mahsa Amini’s death has led to protests around Iran.5 These protests have become increasingly violent and resulted in thousands of Iranian citizens being injured, imprisoned, and killed.6 Further, it led to Iran being removed from the United Nations (UN) Commission on the Status of Women.7 This article will discuss in further detail the history of the veiling laws from their implementation up to current events and the future implications of these laws

    Signatures of non-locality in the first-order coherence of the scattered light

    Get PDF
    The spatial coherence of an atomic wavepacket can be detected in the scattered photons, even when the center-of-mass motion is in the quantum coherent superposition of two distant, non-overlapping wave packets. Spatial coherence manifests itself in the power spectrum of the emitted photons, whose spectral components can exhibit interference fringes as a function of the emission angle. The contrast and the phase of this interference pattern provide information about the quantum state of the center of mass of the scattering atom.Comment: 5 pages, one figure, submitted to Laser Physics, special issue in memory of Herbert Walthe

    Inductively guided circuits for ultracold dressed atoms

    Get PDF
    Recent progress in optics, atomic physics and material science has paved the way to study quantum effects in ultracold atomic alkali gases confined to non-trivial geometries. Multiply connected traps for cold atoms can be prepared by combining inhomogeneous distributions of DC and radio-frequency electromagnetic fields with optical fields that require complex systems for frequency control and stabilization. Here we propose a flexible and robust scheme that creates closed quasi-one-dimensional guides for ultracold atoms through the ‘dressing’ of hyperfine sublevels of the atomic ground state, where the dressing field is spatially modulated by inductive effects over a micro-engineered conducting loop. Remarkably, for commonly used atomic species (for example, 7Li and 87Rb), the guide operation relies entirely on controlling static and low-frequency fields in the regimes of radio-frequency and microwave frequencies. This novel trapping scheme can be implemented with current technology for micro-fabrication and electronic control

    Measurement of shower development and its Moli\`ere radius with a four-plane LumiCal test set-up

    Get PDF
    A prototype of a luminometer, designed for a future e+e- collider detector, and consisting at present of a four-plane module, was tested in the CERN PS accelerator T9 beam. The objective of this beam test was to demonstrate a multi-plane tungsten/silicon operation, to study the development of the electromagnetic shower and to compare it with MC simulations. The Moli\`ere radius has been determined to be 24.0 +/- 0.6 (stat.) +/- 1.5 (syst.) mm using a parametrization of the shower shape. Very good agreement was found between data and a detailed Geant4 simulation.Comment: Paper published in Eur. Phys. J., includes 25 figures and 3 Table

    Interactions of Heavy Hadrons using Regge Phenomenology and the Quark Gluon String Model

    Full text link
    The search for stable heavy exotic hadrons is a promising way to observe new physics processes at collider experiments. The discovery potential for such particles can be enhanced or suppressed by their interactions with detector material. This paper describes a model for the interactions in matter of stable hadrons containing an exotic quark of charges ±1/3e\pm {1/3}e or ±2/3e\pm {2/3}e using Regge phenomenology and the Quark Gluon String Model. The influence of such interactions on searches at the LHC is also discussed

    Radio-frequency dressed state potentials for neutral atoms

    Get PDF
    Potentials for atoms can be created by external fields acting on properties like magnetic moment, charge, polarizability, or by oscillating fields which couple internal states. The most prominent realization of the latter is the optical dipole potential formed by coupling ground and electronically excited states of an atom with light. Here we present an experimental investigation of the remarkable properties of potentials derived from radio-frequency (RF) coupling between electronic ground states. The coupling is magnetic and the vector character allows to design state dependent potential landscapes. On atom chips this enables robust coherent atom manipulation on much smaller spatial scales than possible with static fields alone. We find no additional heating or collisional loss up to densities approaching 101510^{15} atoms / cm3^3 compared to static magnetic traps. We demonstrate the creation of Bose-Einstein condensates in RF potentials and investigate the difference in the interference between two independently created and two coherently split condensates in identical traps. All together this makes RF dressing a powerful new tool for micro manipulation of atomic and molecular systems

    Matter-wave interferometry in a double well on an atom chip

    Full text link
    Matter-wave interference experiments enable us to study matter at its most basic, quantum level and form the basis of high-precision sensors for applications such as inertial and gravitational field sensing. Success in both of these pursuits requires the development of atom-optical elements that can manipulate matter waves at the same time as preserving their coherence and phase. Here, we present an integrated interferometer based on a simple, coherent matter-wave beam splitter constructed on an atom chip. Through the use of radio-frequency-induced adiabatic double-well potentials, we demonstrate the splitting of Bose-Einstein condensates into two clouds separated by distances ranging from 3 to 80 microns, enabling access to both tunnelling and isolated regimes. Moreover, by analysing the interference patterns formed by combining two clouds of ultracold atoms originating from a single condensate, we measure the deterministic phase evolution throughout the splitting process. We show that we can control the relative phase between the two fully separated samples and that our beam splitter is phase-preserving
    • 

    corecore