465 research outputs found

    Supercurrent Spectroscopy of Andreev States

    Full text link
    We measure the excitation spectrum of a superconducting atomic contact. In addition to the usual continuum above the superconducting gap, the single particle excitation spectrum contains discrete, spin-degenerate Andreev levels inside the gap. Quasiparticle excitations are induced by a broadband on-chip microwave source and detected by measuring changes in the supercurrent flowing through the atomic contact. Since microwave photons excite quasiparticles in pairs, two types of transitions are observed: Andreev transitions, which consists of putting two quasiparticles in an Andreev level, and transitions to odd states with a single quasiparticle in an Andreev level and the other one in the continuum. In contrast to absorption spectroscopy, supercurrent spectroscopy allows detection of long-lived odd states.Comment: typos correcte

    Intensity of Coulomb Interaction between quasiparticles in diffusive metallic wires

    Get PDF
    The energy dependence and intensity of Coulomb interaction between quasiparticles in metallic wires is obtained from two different methods: determination of the temperature dependence of the phase coherence time from the magnetoresistance, and measurements of the energy distribution function in out-of-equilibrium situations. In both types of experiment, the energy dependence of the Coulomb interaction is found to be in excellent agreement with theoretical predictions. In contrast, the intensity of the interaction agrees closely with theory only with the first method, whereas an important discrepancy is found using the second one. Different explanations are proposed, and results of a test experiment are presented.Comment: Submitted to Solid States Communication

    Effect of Magnetic Impurities on Energy Exchange between Electrons

    Get PDF
    In order to probe quantitatively the effect of Kondo impurities on energy exchange between electrons in metals, we have compared measurements on two silver wires with dilute magnetic impurities (manganese) introduced in one of them. The measurement of the temperature dependence of the electron phase coherence time on the wires provides an independent determination of the impurity concentration. Quantitative agreement on the energy exchange rate is found with a theory by G\"{o}ppert et al. that accounts for Kondo scattering of electrons on spin-1/2 impurities.Comment: 4 page

    Asymmetric noise probed with a Josephson junction

    Get PDF
    To be published in Physical Review LettersInternational audienceFluctuations of the current through a tunnel junction are measured using a Josephson junction. The current noise adds to the bias current of the Josephson junction and affects its switching out of the supercurrent branch. The experiment is carried out in a regime where switching is determined by thermal activation. The variance of the noise results in an elevated effective temperature, whereas the third cumulant, related to its asymmetric character, leads to a difference in the switching rates observed for opposite signs of the current through the tunnel junction. Measurements are compared quantitatively with recent theoretical predictions

    Measuring the distribution of current fluctuations through a Josephson junction with very short current pulses

    Full text link
    We propose to probe the distribution of current fluctuations by means of the escape probability histogram of a Josephson junction (JJ), obtained using very short bias current pulses in the adiabatic regime, where the low-frequency component of the current fluctuations plays a crucial role. We analyze the effect of the third cumulant on the histogram in the small skewness limit, and address two concrete examples assuming realistic parameters for the JJ. In the first one we study the effects due to fluctuations produced by a tunnel junction, finding that the signature of higher cumulants can be detected by taking the derivative of the escape probability with respect to current. In such a realistic situation, though, the determination of the whole distribution of current fluctuations requires an amplification of the cumulants. As a second example we consider magnetic flux fluctuations acting on a SQUID produced by a random telegraph source of noise.Comment: 6 pages, 6 figures; final versio

    Quantized adiabatic charge pumping and resonant transmission

    Full text link
    Adiabatically pumped charge, carried by non-interacting electrons through a quantum dot in a turnstile geometry, is studied as function of the strength of the two modulating potentials (related to the conductances of the two point-contacts to the leads) and of the phase shift between them. It is shown that the magnitude and sign of the pumped charge are determined by the relative position and orientation of the closed contour traversed by the system in the parameter plane, and the transmission peaks (or resonances) in that plane. Integer values (in units of the electronic charge ee) of the pumped charge (per modulation period) are achieved when a transmission peak falls inside the pumping contour. The integer value is given by the winding number of the pumping contour: double winding in the same direction gives a charge of 2, while winding around two opposite branches of the transmission peaks or winding in opposite directions can give a charge close to zero.Comment: 7 pages, 12 figure

    Dephasing of Electrons in Mesoscopic Metal Wires

    Full text link
    We have extracted the phase coherence time τϕ\tau_{\phi} of electronic quasiparticles from the low field magnetoresistance of weakly disordered wires made of silver, copper and gold. In samples fabricated using our purest silver and gold sources, τϕ\tau_{\phi} increases as T−2/3T^{-2/3} when the temperature TT is reduced, as predicted by the theory of electron-electron interactions in diffusive wires. In contrast, samples made of a silver source material of lesser purity or of copper exhibit an apparent saturation of τϕ\tau_{\phi} starting between 0.1 and 1 K down to our base temperature of 40 mK. By implanting manganese impurities in silver wires, we show that even a minute concentration of magnetic impurities having a small Kondo temperature can lead to a quasi saturation of τϕ\tau_{\phi} over a broad temperature range, while the resistance increase expected from the Kondo effect remains hidden by a large background. We also measured the conductance of Aharonov-Bohm rings fabricated using a very pure copper source and found that the amplitude of the h/eh/e conductance oscillations increases strongly with magnetic field. This set of experiments suggests that the frequently observed ``saturation'' of τϕ\tau_{\phi} in weakly disordered metallic thin films can be attributed to spin-flip scattering from extremely dilute magnetic impurities, at a level undetectable by other means.Comment: 16 pages, 11 figures, to be published in Physical Review

    Quantum Pump for Fractional Charge

    Full text link
    We propose a theoretical scenario for pumping of fractionally charged quasi-particle in the context of ν=1/3\nu=1/3 fractional quantum Hall liquid. We consider quasi-particle pumping across an anti-dot level tuned close to the resonance. Fractional charge pumping is achieved by slow and periodic modulation of coupling of the anti-dot level to left and right moving edges of a Hall bar set-up. This is attained by periodically modulating the gate voltages controlling the couplings. In order to obtain quantization of pumped charge in the unit of the electronic charge fraction (νe\nu e) per pumping cycle in the adiabatic limit, we argue that the only possibility is to tune the quasi-particle operator to be irrelevant from being relevant in the renormalization group sense, which can be accomplished by invoking quantum Hall line junctions into the Hall bar geometry. We also comment on possibility for experimental realization of the above scenario.Comment: Version to appear in Europhys. Lett. (2008
    • …
    corecore