139 research outputs found

    PRODUCT PLACEMENT

    Get PDF

    MOLECULAR AND GENETIC CHARACTERISTICS OF SURFACE AND NONSTRUCTURE PROTEINS OF PANDEMIC INFLUENZA VIRUSES A(H1N1)PDM09 IN 2015-2016 EPIDEMIC SEASON

    Get PDF
    The aim of the present study was identifying of molecular and genetic changes in hemaglutinin (HA), neuraminidase (NA) and non-structure protein (NS1) genes of pandemic influenza A(H1N1)pdm09 strains, that circulated in Ukraine during 2015-2016 epidemic season. Samples (nasopharyngeal swabs from patients) were analyzed using real-time polymerase chain reaction (RTPCR). Phylogenetic trees were constructed using MEGA 7 software. 3D structures were constructed in Chimera 1.11.2rc software.Viruses were collected in 2015-2016 season fell into genetic group 6B and in two emerging subgroups, 6B.1 and 6B.2 by gene of HA and NA. Subgroups 6B.1 and 6B.2 are defined by the following amino acid substitutions. In the NS1 protein were identified new amino acid substitutions D2E, N48S, and E125D in 2015-2016 epidemic season. Specific changes were observed in HA protein antigenic sites, but viruses saved similarity to vaccine strain. NS1 protein acquired substitution associated with increased virulence of the influenza virus

    Resistance of old winter bread wheat landraces to tan spot

    Get PDF
    Background. The most effective and environmentally safe way to combat wheat diseases is to produce cultivars resistant to their pathogens. For this purpose, old landraces are often used as genetically diverse sources of traits important for breeding. In the process of wheat breeding for resistance to tan spot caused by the fungus Pyrenophora tritici-repentis (Died.) Drechs. (abbr. Ptr), selection is carried out against the dominant allele of Tsn1, the gene of sensitivity to the toxin Ptr ToxA, which induces necrosis and represents the main pathogenicity factor of Ptr controlled by the ToxA gene. The aim of the study was to characterize a set of bread wheat (Triticum aestivum L.) accessions from the VIR collection for resistance to various Ptr populations, genotype these accessions using Xfcp623 – a DNA marker of the Tsn1 gene, and identify sources of tan spot resistance.Materials and methods. Sixty-seven accessions of winter bread wheat landraces were studied. Seedling resistance to two Ptr populations was assessed using a 5-point scale adopted at VIZR. The allelic state of Tsn1 was identified by PCR.Results. Dominant alleles of Tsn1 were found for 55% of the studied accessions. Seventeen accessions were resistant or moderately resistant to two Ptr populations and an isolate from Krasnodar Territory previously used for their characterization. Nine of them had the tsn1tsn1 genotype, and 8 had Tsn1Tsn1. The accessions mainly belonged to three agroecological groups proposed by N. I. Vavilov: β€œsteppe winter bread wheat (Banatka wheats)”, β€œNorth European forest awnless bread wheats (Sandomirka wheats)”, and β€œCaucasian mountain winter bread wheat”.Conclusion. The identified 17 accessions resistant to Ptr are potential breeding sources of resistance. In the studied set of accessions, no significant relationship was found between the allelic state of the Tsn1 gene in the accession and its response to the infection with pathogen populations, including isolates with the ToxA gene

    Bioethics In The Context Of Socio-Economic, Socio-Political And Cultural Development Of Society

    Get PDF
    Π‘Ρ–ΠΎΠ΅Ρ‚ΠΈΠΊΠ° – Π½Π΅ лишС Π½ΠΎΠ²ΠΈΠΉ напрямок Π² Π½Π°ΡƒΡ†Ρ–, Π°Π»Π΅ ΠΉ Ρ–Π½ΡˆΠ° сфСра Ρ„Ρ–Π»ΠΎΡΠΎΡ„ΡΡŒΠΊΠΎΠ³ΠΎ пізнання Тиття Ρ‚Π° ΠΉΠΎΠ³ΠΎ збСрСТСння Π½Π° Π—Π΅ΠΌΠ»Ρ–. Π’ Ρ€ΠΎΠ±ΠΎΡ‚Ρ– розглянуто ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΈ Π΅Ρ‚ΠΈΠΊΠΎ-ΠΏΡ€Π°Π²ΠΎΠ²ΠΎΠ³ΠΎ Ρ€Π΅Π³ΡƒΠ»ΡŽΠ²Π°Π½Π½Ρ сучасних Π±Ρ–ΠΎΠΌΠ΅Π΄ΠΈΡ‡Π½ΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ, Π΄Π΅ ΠΎΠ΄Π½ΠΈΠΌ Ρ–Π· ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π² вивчСння Ρ‚Π° опису об’єктів навколишнього сСрСдовища Ρ” СкспСримСнт. Π’Ρ–Π½ Ρ” ΠΊΠ»ΡŽΡ‡ΠΎΠ²ΠΈΠΌ інструмСнтом ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠΈ, Π±Π΅Π· якої Π½Π΅ΠΌΠΎΠΆΠ»ΠΈΠ²Π° тСорія. Π’Ρ€Π°Ρ…ΠΎΠ²ΡƒΡŽΡ‡ΠΈ Ρ‚Π΅ΠΌΠΏΠΈ Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ сучасної Π½Π°ΡƒΠΊΠΈ Ρ‚Π° Π·Π°Π³Π°Π»ΠΎΠΌ світу, Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡŽ Ρ” Ρ‚Π΅ΠΌΠ° вивчСння ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ–Π² Ρ€Π΅Π³ΡƒΠ»ΡŽΠ²Π°Π½Π½Ρ Π±Ρ–ΠΎΠΌΠ΅Π΄ΠΈΡ‡Π½ΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ Ρ‚Π° Ρ—Ρ… удосконалСння. Π£ статті Ρ‚Π°ΠΊΠΎΠΆ висвітлСно основні ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈ використання людСй Ρ‚Π° Ρ‚Π²Π°Ρ€ΠΈΠ½ Ρƒ Π±Ρ–ΠΎΠΌΠ΅Π΄ΠΈΡ‡Π½ΠΈΡ… дослідТСннях. ПояснСно Ρ‡ΠΎΠΌΡƒ Ρ‚Π°ΠΊ Π²Π°ΠΆΠ»ΠΈΠ²ΠΎ посилити Π³ΡƒΠΌΠ°Π½Ρ–Π·Π°Ρ†Ρ–ΡŽ Ρ†ΡŒΠΎΠ³ΠΎ процСсу. Висновки: Π΄ΡƒΠΆΠ΅ Π²Π°ΠΆΠ»ΠΈΠ²ΠΎ Π·Π°ΠΏΠΎΠ±Ρ–Π³Π°Ρ‚ΠΈ Торстокому поводТСнню Π· Π±ΡƒΠ΄ΡŒ-якими Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΠΌΠΈ об’єктами Π² контСксті Π²ΠΈΡ€Ρ–ΡˆΠ΅Π½Π½Ρ Π±Ρ–ΠΎΠ΅Ρ‚ΠΈΡ‡Π½ΠΈΡ… Ρ‚Π° ΠΏΡ€Π°Π²ΠΎΠ²ΠΈΡ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ, пов’язаних Ρ–Π· Ρ€Π΅Π°Π»Ρ–Π·Π°Ρ†Ρ–Ρ”ΡŽ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡƒ Π³ΡƒΠΌΠ°Π½Ρ–Π·ΠΌΡƒ Ρ‚Π° захистом ΠΏΡ€Π°Π² ΠΆΠΈΠ²ΠΈΡ… ΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡ–Π². Бучасна Π½Π°ΡƒΠΊΠ° Ρ‚Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ° Π΄ΠΎΠΊΠ»Ρ–Π½Ρ–Ρ‡Π½ΠΈΡ… Ρ‚Π° ΠΊΠ»Ρ–Π½Ρ–Ρ‡Π½ΠΈΡ… Π²ΠΈΠΏΡ€ΠΎΠ±ΡƒΠ²Π°Π½ΡŒ ΠΏΠΎΠ²ΠΈΠ½Π½Ρ– Π±ΡƒΡ‚ΠΈ Π·Π°Π»ΡƒΡ‡Π΅Π½Ρ– Π΄ΠΎ Ρ†Ρ–Ρ”Ρ— ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΈ Π· ΠΌΠ΅Ρ‚ΠΎΡŽ вдосконалСння Ρ‚Π° унівСрсалізації процСсу ΠΌΠ΅Π΄ΠΈΠΊΠΎ-Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ in vitro. ΠœΠ΅Ρ‚Π° статті – Π²ΠΈΠ²Ρ‡ΠΈΡ‚ΠΈ основні ΠΌΡ–ΠΆΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎ-ΠΏΡ€Π°Π²ΠΎΠ²Ρ– ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈ використання ΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡ–Π² Ρƒ Π±Ρ–ΠΎΠΌΠ΅Π΄ΠΈΡ‡Π½ΠΈΡ… СкспСримСнтах, Π° Ρ‚Π°ΠΊΠΎΠΆ Π²ΠΈΠ·Π½Π°Ρ‡ΠΈΡ‚ΠΈ основні ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΈ Π· Ρ†ΡŒΠΎΠ³ΠΎ питання Ρ‚Π° окрСслити ΡˆΠ»ΡΡ…ΠΈ Ρ—Ρ… Π²ΠΈΡ€Ρ–ΡˆΠ΅Π½Π½Ρ. ΠžΠ³Π»ΡΠ½ΡƒΡ‚ΠΈ сучасний стан Π΅Ρ‚ΠΈΠΊΠΎ-ΠΏΡ€Π°Π²ΠΎΠ²ΠΎΠ³ΠΎ Ρ€Π΅Π³ΡƒΠ»ΡŽΠ²Π°Π½Π½Ρ, ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ–Π² Ρ‚Π° ΠΏΡ€Π°Π²ΠΈΠ» провСдСння Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΈΡ… ΠΌΠ΅Π΄ΠΈΠΊΠΎ-Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ. На ΡΡŒΠΎΠ³ΠΎΠ΄Π½Ρ–ΡˆΠ½Ρ–ΠΉ дСнь ΠΌΡ–ΠΆΠ½Π°Ρ€ΠΎΠ΄Π½Π΅ співтовариство прийняло Π΄ΠΎΡΡ‚Π°Ρ‚Π½ΡŒΠΎ ΠΏΡ€Π°Π²ΠΎΠ²ΠΈΡ… Π°ΠΊΡ‚Ρ–Π², Ρ‰ΠΎ Ρ€Π΅Π³ΡƒΠ»ΡŽΡŽΡ‚ΡŒ Π½Π°Π»Π΅ΠΆΠ½Π΅ провСдСння Π±Ρ–ΠΎΠΌΠ΅Π΄ΠΈΡ‡Π½ΠΈΡ… Π΄ΠΎΠΊΠ»Ρ–Ρ‡Π½Ρ–Ρ‡Π½ΠΈΡ… Ρ‚Π° ΠΊΠ»Ρ–Π½Ρ–Ρ‡Π½ΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ Π· Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΠΌΠΈ об’єктами, Π² Ρ‚ΠΎΠΌΡƒ числі ΡΠΏΠ΅Ρ†Ρ–Π°Π»ΡŒΠ½ΠΎ Π²ΠΈΡ€ΠΎΡ‰Π΅Π½ΠΈΡ… для Ρ‚Π°ΠΊΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ ΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡ–Π² (Π² Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Ρ–Ρ—). ΠžΡΡ‚Π°Π½Π½Ρ–ΠΌ часом як Ρƒ Π½Π°Ρ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΌΡƒ законодавстві Ρ”Π²Ρ€ΠΎΠΏΠ΅ΠΉΡΡŒΠΊΠΈΡ… ΠΊΡ€Π°Ρ—Π½, Ρ‚Π°ΠΊ Ρ– Π² ΠΌΡ–ΠΆΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠΌΡƒ законодавстві ΡΠΏΠΎΡΡ‚Π΅Ρ€Ρ–Π³Π°ΡŽΡ‚ΡŒΡΡ Ρ‚Π΅Π½Π΄Π΅Π½Ρ†Ρ–Ρ— посилСння Ρ—Ρ… захисту Ρƒ Π³Π°Π»ΡƒΠ·Ρ– Π±Ρ–ΠΎΠΌΠ΅Π΄ΠΈΡ‡Π½ΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ. Π’ статті ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΎ ΠΏΡ€ΠΈΠΊΠ»Π°Π΄ΠΈ знущання, Ρ– як наслідок прямого ΠΏΠΎΡ€ΡƒΡˆΠ΅Π½Π½Ρ основних ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ–Π² Π±Ρ–ΠΎΠ΅Ρ‚ΠΈΠΊΠΈ – ΠΏΠΎΠ²Π°Π³ΠΈ Π΄ΠΎ автономності Ρ‚Π° гідності людини, Π”ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ, Ρ‰ΠΎ основна Π·Π°Π΄Π°Ρ‡Π° Π±Ρ–ΠΎΠ΅Ρ‚ΠΈΠΊΠΈ – збСрСТСння Тиття Ρ‚Π° здоров’я ΠΊΠΎΠΆΠ½ΠΎΠ³ΠΎ ΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡƒ. ΠžΠ±ΠΎΠ²β€™ΡΠ·ΠΊΠΎΠ²ΠΈΠΌ Ρ” як Π½Π° ΠΌΡ–ΠΆΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠΌΡƒ, Ρ‚Π°ΠΊ Ρ– Π½Π° Π½Π°Ρ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΌΡƒ рівнях прийняття ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌ Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ Ρ‚Π° ΠΏΡ–Π΄Ρ‚Ρ€ΠΈΠΌΠΊΠΈ Π½Π°ΡƒΠΊΠΎΠ²ΠΎΠ³ΠΎ вивчСння впровадТСння біосистСм in vitro Ρƒ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΡƒ Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ. На Π½Π°Ρ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΌΡƒ Ρ€Ρ–Π²Π½Ρ– Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½ΠΎ ΠΊΡ€ΠΈΠΌΡ–Π½Π°Π»Ρ–Π·ΡƒΠ²Π°Ρ‚ΠΈ ΠΏΠΎΡ€ΡƒΡˆΠ΅Π½Π½Ρ ΠΌΡ–ΠΆΠ½Π°Ρ€ΠΎΠ΄Π½ΠΈΡ… стандартів провСдСння Π±Ρ–ΠΎΠΌΠ΅Π΄ΠΈΡ‡Π½ΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ Π· використанням ΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡ–Π², посилити Ρ–Π½ΡˆΡ– Π²ΠΈΠ΄ΠΈ Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π°Π»ΡŒΠ½ΠΎΡΡ‚Ρ– Ρ‚Π° створити ΡΠΏΠ΅Ρ†Ρ–Π°Π»ΡŒΠ½Ρƒ систСму Π΄Π΅Ρ€ΠΆΠ°Π²Π½ΠΈΡ… ΠΎΡ€Π³Π°Π½Ρ–Π², Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π°Π»ΡŒΠ½ΠΈΡ… Π·Π° ΠΏΠΎΠ»Ρ–Ρ‚ΠΈΠΊΡƒ Ρ—Ρ… використання Ρƒ Π±Ρ–ΠΎΠΌΠ΅Π΄ΠΈΡ‡Π½ΠΈΡ… цілях Ρ‚Π° здійснСння ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŽ Π² Ρ†Ρ–ΠΉ області.The paper considers the problems of ethical and legal regulation of modern biomedical research, where one of the methods of studying and describing environmental objects is an experiment. It is a key tool of practice, without which theory is impossible. Given the pace of development of modern science and the world as a whole, the topic of studying the principles of regulation of biomedical research and their improvement is relevant. The article highlights the basic principles of the use of humans and animals in biomedical research. It was explained why it is so important to strengthen the humanization of this process. The conclusions are the following: it is very important to prevent cruelty of any biological objects in the context of resolving bioethical and legal problems associated with the implementation of the principle of humanism and the protection of the rights of living organisms. Modern science and the practice of preclinical and clinical tests should be involved into serious challenge in order to improve and universalize the process of medical and biological research technology in vitro. The purpose of the article is to study the main international legal principles of using living organisms in biomedical experiments, as well as to determine the main problems on this issue and to outline the ways to resolve them. To examine the current state of ethical and legal regulation, principles and rules for conducting experimental biomedical research. Nowadays the international community has adopted enough legal acts regulating the proper behavior with biological objects, including those specially cultivated for such studies (laboratory) when conducting biomedical experiments. Recently, both, in the national legislation of European countries and international legislation, there have been trends to strengthen their protection in the field of biomedical research. The article provides examples of bullying, and as a result of a direct violation of the basic principles of bioethics – respect for the autonomy and dignity of a person. It is proved that the main task of bioethics is to preserve the life and health of every organism. It is imperative, both at the international and national levels, to adopt programs for development and support of scientific study of the in vitro biosystems introduction into research practice. At the national level, it is necessary to criminalize the violation of international standards for conducting biomedical research using organisms. Both, international and national legislation should impose a direct ban on the use of in vivo technologies in case of the possibility of using in vitro technologies.Биоэтика – Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½ΠΎΠ²ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π² Π½Π°ΡƒΠΊΠ΅, Π½ΠΎ ΠΈ другая сфСра философского познания ΠΆΠΈΠ·Π½ΠΈ ΠΈ Π΅Π³ΠΎ сохранСния Π½Π° Π—Π΅ΠΌΠ»Π΅. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ рассмотрСны ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ этико-ΠΏΡ€Π°Π²ΠΎΠ²ΠΎΠ³ΠΎ рСгулирования соврСмСнных биомСдицинских исслСдований, Π³Π΄Π΅ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² изучСния ΠΈ описания ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉ срСды являСтся экспСримСнт. Он являСтся ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹ΠΌ инструмСнтом ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠΈ, Π±Π΅Π· ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Π° тСория. Учитывая Ρ‚Π΅ΠΌΠΏΡ‹ развития соврСмСнной Π½Π°ΡƒΠΊΠΈ ΠΈ Π² Ρ†Π΅Π»ΠΎΠΌ ΠΌΠΈΡ€Π°, Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ являСтся Ρ‚Π΅ΠΌΠ° изучСния ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΎΠ² рСгулирования биомСдицинских исслСдований ΠΈ ΠΈΡ… ΡƒΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΡŽ. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Ρ‹ основныС ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ использования людСй ΠΈ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… Π² биомСдицинских исслСдованиях. ОбъяснСно ΠΏΠΎΡ‡Π΅ΠΌΡƒ Ρ‚Π°ΠΊ Π²Π°ΠΆΠ½ΠΎ ΡƒΡΠΈΠ»ΠΈΡ‚ΡŒ Π³ΡƒΠΌΠ°Π½ΠΈΠ·Π°Ρ†ΠΈΡŽ этого процСсса. Π’Ρ‹Π²ΠΎΠ΄Ρ‹: ΠΎΡ‡Π΅Π½ΡŒ Π²Π°ΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΠΎΡ‚Π²Ρ€Π°Ρ‰Π°Ρ‚ΡŒ ТСстокого обращСния с Π»ΡŽΠ±Ρ‹ΠΌΠΈ биологичСскими ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ Π² контСкстС Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ биоэтичСских ΠΈ ΠΏΡ€Π°Π²ΠΎΠ²Ρ‹Ρ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ, связанных с Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ° Π³ΡƒΠΌΠ°Π½ΠΈΠ·ΠΌΠ° ΠΈ Π·Π°Ρ‰ΠΈΡ‚ΠΎΠΉ ΠΏΡ€Π°Π² ΠΆΠΈΠ²Ρ‹Ρ… ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ². БоврСмСнная Π½Π°ΡƒΠΊΠ° ΠΈ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ° доклиничСских ΠΈ клиничСских испытаний Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈΠ²Π»Π΅Ρ‡Π΅Π½Ρ‹ ΠΊ этой ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ΅ с Ρ†Π΅Π»ΡŒΡŽ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΡ ΠΈ унивСрсализации процСсса ΠΌΠ΅Π΄ΠΈΠΊΠΎ-биологичСских исслСдований in vitro. ЦСль ΡΡ‚Π°Ρ‚ΡŒΠΈ – ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ основныС ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎ-ΠΏΡ€Π°Π²ΠΎΠ²Ρ‹Π΅ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ использования ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π² биомСдицинских экспСримСнтах, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ основныС ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ ΠΏΠΎ этому вопросу ΠΈ Π½Π°ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ ΠΏΡƒΡ‚ΠΈ ΠΈΡ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ. ΠžΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ соврСмСнноС состояниС этико-ΠΏΡ€Π°Π²ΠΎΠ²ΠΎΠ³ΠΎ рСгулирования, ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΎΠ² ΠΈ ΠΏΡ€Π°Π²ΠΈΠ» провСдСния ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ΅Π΄ΠΈΠΊΠΎ-биологичСских исслСдований. На сСгодняшний дСнь ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠ΅ сообщСство приняло достаточно ΠΏΡ€Π°Π²ΠΎΠ²Ρ‹Ρ… Π°ΠΊΡ‚ΠΎΠ², Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰Π΅Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ биомСдицинских доклиничСских ΠΈ клиничСских исслСдований с биологичСскими ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ, Π² Ρ‚ΠΎΠΌ числС ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎ Π²Ρ‹Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… для Ρ‚Π°ΠΊΠΈΡ… исслСдований ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² (Π² Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΈ). Π’ послСднСС врСмя ΠΊΠ°ΠΊ Π² Π½Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΌ Π·Π°ΠΊΠΎΠ½ΠΎΠ΄Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π΅ СвропСйских стран, Ρ‚Π°ΠΊ ΠΈ Π² ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠΌ Π·Π°ΠΊΠΎΠ½ΠΎΠ΄Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π΅ Π½Π°Π±Π»ΡŽΠ΄Π°ΡŽΡ‚ΡΡ Ρ‚Π΅Π½Π΄Π΅Π½Ρ†ΠΈΠΈ усилСния ΠΈΡ… Π·Π°Ρ‰ΠΈΡ‚Ρ‹ Π² области биомСдицинских исслСдований. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΈΠ·Π΄Π΅Π²Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°, ΠΈ ΠΊΠ°ΠΊ слСдствиС прямого Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ основных ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΎΠ² биоэтики – уваТСния ΠΊ автономности ΠΈ достоинства Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, Π”ΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ основная Π·Π°Π΄Π°Ρ‡Π° биоэтики – сохранСниС ΠΆΠΈΠ·Π½ΠΈ ΠΈ Π·Π΄ΠΎΡ€ΠΎΠ²ΡŒΡ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ являСтся ΠΊΠ°ΠΊ Π½Π° ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠΌ, Ρ‚Π°ΠΊ ΠΈ Π½Π° Π½Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΌ уровнях принятия ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ развития ΠΈ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ Π½Π°ΡƒΡ‡Π½ΠΎΠ³ΠΎ изучСния внСдрСния биосистСм in vitro Π² ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΡƒ исслСдований. На Π½Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΊΡ€ΠΈΠΌΠΈΠ½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½Ρ‹Ρ… стандартов провСдСния биомСдицинских исслСдований с использованиСм ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ², ΡƒΡΠΈΠ»ΠΈΡ‚ΡŒ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Π²ΠΈΠ΄Ρ‹ отвСтствСнности ΠΈ ΡΠΎΠ·Π΄Π°Ρ‚ΡŒ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½ΡƒΡŽ систСму государствСнных ΠΎΡ€Π³Π°Π½ΠΎΠ², отвСтствСнных Π·Π° ΠΏΠΎΠ»ΠΈΡ‚ΠΈΠΊΡƒ ΠΈΡ… использования Π² биомСдицинских цСлях ΠΈ осущСствлСния контроля Π² этой области

    Influence of allelic polymorphism in the 3’ untranslated region of the <i>StTCP23</i> gene on the tolerance of potato cultivars to the potato spindle tuber viroid

    Get PDF
    Background. It is known that the pathological phenotype of potato plants can be mediated by complementary interactions between the genomic RNA of PSTVd and mRNA of some regulatory genes, which consequently lead to RNA interference, the synthesis of small interfering RNAs (vd-sRNA PSTVd), and impaired morphogenesis. At the same time, symptoms caused by the viroid may vary in different potato cultivars. Here we predict the interactions between the 3’ UTRs of various alleles of the StTCP23 transcription factor gene and the complementary regions in PSTVd genomic RNA.Materials and methods. We selected eight commercial potato cultivars with different symptoms of viroid infection and disease. For each cultivar, six clones of each cDNA amplicon of StTCP23 with a 3’ UTR were identified, and the allelic compositions of the target regions within their 3’ UTRs were characterized.Results. In total, 11 types of alleles of the 3’ UTR StTCP23 segment complementary to the vd-sRNA PSTVd were identified. Cultivars with the A allele (β€˜Gala’, β€˜Colomba’, β€˜Favorit’, and β€˜Fioletovy’) identical to the reference genome or a high dose of the C allele with a deletion of four nucleotides (cv. β€˜Impala’) were characterized by high susceptibility already at the primary (firstyear) infection with the PSTVd. Cvs. β€˜Krepysh’, β€˜Labadia’ and β€˜Riviera’, classified as tolerant during primary inoculation, on the contrary, were characterized by the absence of the A allele and the presence of cultivar-specific mutant alleles.Conclusion. A high degree of polymorphism in the target site (3’ UTR region) of StTCP23 indicates a possible selection pressure on this locus. It can be assumed that cultivars with shorter alleles, which have fewer bases complementary to vd-sRNA in hypothetical duplexes and therefore less likely to induce target gene silencing, are more tolerant to the PSTVd upon primary viroid infection

    The selection pressure on the neuraminidase gene of influenza viruses isolated in Ukraine from 2009 to 2015

    Get PDF
    A broad range of naturally occurring antigenic variants of the influenza virus is caused by its rapid evolutionary variability. The survival of viable influenza virus variants occurs through natural selection. The treatment of influenza infection with modern antiviral drugs – neuraminidase (NA) inhibitors – leads to the occurrence of mutations in the NA gene, which thereby result in the emergence of virus resistance to these drugs. The goal of this study was to determine the selection pressure on the NA protein of influenza viruses isolated in Ukraine from 2009 to 2015. The main method for assessing the selection pressure on proteins is to quantify the ratio of substitution rates at nonsynonymous (dN) and synonymous (dS) sites. With the help of this method, we showed that only a few codons in the NA gene were under positive selection resulting in mutations at the following sites: for influenza A viruses of the A(H1N1)pdm09 subtype – site 40, for viruses of the A(H3N2) subtype – sites 93 and 402, for Influenza B viruses of the B/Yamagata lineage – sites 74, 99, and 268, and for the viruses of the B/Victoria lineage – sites 358, 288, and 455. These sites are not associated with the NA active site, transmembrane domain, or the antigenic sites of this protein. We concluded that NA inhibitors are not a significant factor in the process of selection of the influenza viruses in Ukraine because the sites associated with the resistance of influenza viruses to NA inhibitors were not affected by positive selection. This finding could be explained by the limited use of NA inhibitors for the treatment of influenza infections in Ukraine.Β A broad range of naturally occurring antigenic variants of the influenza virus is caused by its rapid evolutionary variability. The survival of viable influenza virus variants occurs through natural selection. The treatment of influenza infection with modern antiviral drugs – neuraminidase (NA) inhibitors – leads to the occurrence of mutations in the NA gene, which thereby result in the emergence of virus resistance to these drugs. The goal of this study was to determine the selection pressure on the NA protein of influenza viruses isolated in Ukraine from 2009 to 2015. The main method for assessing the selection pressure on proteins is to quantify the ratio of substitution rates at nonsynonymous (dN) and synonymous (dS) sites. With the help of this method, we showed that only a few codons in the NA gene were under positive selection resulting in mutations at the following sites: for influenza A viruses of the A(H1N1)pdm09 subtype – site 40, for viruses of the A(H3N2) subtype – sites 93 and 402, for Influenza B viruses of the B/Yamagata lineage – sites 74, 99, and 268, and for the viruses of the B/Victoria lineage – sites 358, 288, and 455. These sites are not associated with the NA active site, transmembrane domain, or the antigenic sites of this protein. We concluded that NA inhibitors are not a significant factor in the process of selection of the influenza viruses in Ukraine because the sites associated with the resistance of influenza viruses to NA inhibitors were not affected by positive selection. This finding could be explained by the limited use of NA inhibitors for the treatment of influenza infections in Ukraine.

    Potato resistance to quarantine diseases

    Get PDF
    The casual agent of potato wart Synchytrium endobioticum (Schilb.) Perc. and potato golden nematode (PGN) Globodera rostochiensis (Wollenweber) Behrens are the quarantine species causing the most widespread and destructive diseases of potato in the Russian Federation and other countries of the world. The potato pale nematode Globodera pallida (Stone) Behrens is not found in Russia, although in the European Union it is found everywhere. The review provides information on the harmfulness of S. endobioticum and PGN. To date, 43 pathotypes of S. endobioticum and 5 pathotypes of PGN have been revealed in the world. In the Russian Federation, only the first (D1) pathotype of potato wart and pathotype Ro1 of PGN have been found. Modern sets of differentials for S. endobioticum and PGN and methods of pathotype composition determination, including efforts to develop molecular markers (SSR) to determine the race of S. endobioticum, are presented. Data on the resistance of commercial potato cultivars to these quarantine diseases and methods for resistance determination are reviewed. Modern data on the genetics of potato resistance to S. endobioticum, G. rostochiensis and G. pallida, including mapping and cloning of R-genes, are presented. Available literature data on molecular markers of R-genes for marker assisted selection and the evaluation of their effectiveness are presented. The use of multiplex systems allows the presence of several genes for resistance to one or more pathogens to be analyzed at once. Mechanisms of potato quantitative resistance to S. endobioticum and PGN and adaptation processes in pathogens populations resulting in overcoming resistance of host are discussed. Cultivation of cultivars poorly susceptible to PGN can stimulate the adaptive variability of the pathogen and induce virulent pathotypes for 2–3 pathogen generations

    Transmission of potato spindle tuber viroid between <i>Phytophthora infestans</i> and host plants

    Get PDF
    Potato spindle tuber viroid (PSTVd) is a naked, circular, single-stranded RNA (356–363 nucleotides in length) which lacks any protein-coding sequences. It is an economically important pathogen and is classified as a high-risk plant quarantine disease. Moreover, it is known that PSTVd is mechanically transmitted by vegetative plant propagation through infected pollen, and by aphids. The aim of this study is to determine the possibility of viroid transmission by potato pathogen Phytophthora infestans (Mont.) de Bary. PSTVd-infected (strain VP87) potato cultivars Gala, Colomba, and Riviera were inoculated with P. infestans isolate PiVZR18, and in 7 days, after the appearance of symptoms, re-isolation of P. infestans on rye agar was conducted. RT-PCR diagnostics of PSTVd in a mixture of mycelia and sporangia were positive after 14 days of cultivation on rye agar. The PSTVd-infectedΒ P. infestans isolate PiVZR18v+ was used to inoculate the healthy, viroid-free plants of potato cv. Gala and tomatoΒ cv. Zagadka. After 60 days, an amplification fragment of PSTVd was detected in the tissues of one plant of tomatoΒ cv. Zagadka by RT-PCR with the primer set P3/P4, indicating successful transmission of PSTVd by P. infestans isolate PiVZR18v+. This result was confirmed by sequencing of the RT-PCR amplicon with primers P3/P4. The partial sequence of this amplicon was identical (99.5 %) to PSTVd strain VP87. RT-PCR showed the possibility of viroid stability in a pure culture of P. infestans isolate PiVZR18v+ after three consecutive passages on rye agar. PSTVd was not detected after the eighth passage on rye agar in P. infestans subculture. These results are initial evidence of potato viroid PSTVd being bidirectionally transferred between P. infestans and host plants

    Quarantine nematode species and pathotypes potentially dangerous for domestic potato production: populations diversity and the genetics of potato resistance

    Get PDF
    The review considers quarantine species and nematode pathotypes potentially dangerous for domestic potato production. Potatoes are affected by more than 30 types of parasitic nematodes, but the review focuses on the most harmful representatives of genera that cause great damage to potato production: Globodera, Ditylenchus, Nacob bus and Meloidogyne. Phytopathological and molecular methods of identification of species and pathotypes and the main achievements in studying the population variability of parasitic potato nematodes were analyzed. It was shown that due to the peculiarities of the life cycle of nematodes and lability of their genomes, the genetic variability of these organisms is very high, which creates a threat of forming new pathogenic genotypes of the parasites. The information about the intra- and interpopulation variability of nematodes is important for studying the ways of introduction and distribution of separate species, as well as for searching for the correlations of molecular markers with the pathotype. Phylogenetic studies based on modern data on genetic variability of populations have allowed to reveal species complexes in Globodera pallida (Stone) Behrens and Nacobbus aberrans (Thorne) Thorne &amp; Allen (sensu lato), including cryptic species. The main components of successful protection preventing a wide distribution of parasitic nematodes are quarantine measures, agricultural techniques, biological methods of protection and cultivation of resistant cultivars. Special attention in the review is paid to the breeding of potato cultivars with durable resistance to various nematode pathotypes, because the cultivation of such varieties is the most ecologically safe and economically advantageous way to prevent epiphytoties. Currently, significant progress has been made in the genetic protection of potato cultivars, especially against cyst-forming nematodes. The review provides data on sources of potato resistance to parasitic nematodes identified in collections of wild and cultivated species. Data on identified R-gens and QTL of resistance that have been introduced into breeding varieties using different methods and approaches are analyzed. The literature data on the study of structural and functional organization of genes for resistance to potato cyst nematodes are given. The results of molecular research on revealing the polymorphisms of loci involved in the control of resistance to cyst and gall nematodes, the development of molecular markers of certain genes and their use in marker-assisted selection for developing of new resistant cultivars, including those with group resistance, are considered
    • …
    corecore