121 research outputs found

    Self-diffusion of phosphonium Bis(Salicylato)Borate ionic liquid in pores of Vycor porous glass

    Get PDF
    © 2016 Elsevier Inc. All rights reserved.1H NMR pulsed field gradient was used to study self-diffusion of a phosphonium bis(salicylato)borate ionic liquid ([P6,6,6,14][BScB]) in the pores of Vycor porous glass at 296 K. Confinement in pores increases diffusion coefficients of the ions by a factor of 35. However, some [P6,6,6,14][BScB] ions demonstrated apparent diffusion coefficients much lower than their mean values, which may be due to partially restricted diffusion of the ions. We suggest that this fraction corresponds to areas where ions are confined by pore 'necks' (micropores) and empty voids. Heating of the ionic liquid/Vycor system at 330 K led to a change in the diffusivity of the ions, because of their redistribution in the pores. The size of the bounded regions is on the order of 1 μm, as estimated from the dependence of the ion diffusivity on the diffusion time

    Acceleration of diffusion in ethylammonium nitrate ionic liquid confined between parallel glass plates

    Get PDF
    © the Owner Societies 2017. Diffusion of EAN confined between polar glass plates separated by a few micrometers is higher by a factor of ca. 2 as compared to bulk values. Formation of a new phase, different to the bulk, was suggested

    Aggregation and fibril morphology of the Arctic mutation of Alzheimer's Aβ peptide by CD, TEM, STEM and in situ AFM

    Get PDF
    Morphology of aggregation intermediates, polymorphism of amyloid fibrils and aggregation kinetics of the "Arctic" mutant of the Alzheimer's amyloid β-peptide, Aβ(1-40)(E22G), in a physiologically relevant Tris buffer (pH 7.4) were thoroughly explored in comparison with the human wild type Alzheimer's amyloid peptide, wt-Aβ(1-40), using both in situ atomic force and electron microscopy, circular dichroism and thioflavin T fluorescence assays. For arc-Aβ(1-40) at the end of the 'lag'-period of fibrillization an abrupt appearance of ∼3nm size 'spherical aggregates' with a homogeneous morphology, was identified. Then, the aggregation proceeds with a rapid growth of amyloid fibrils with a variety of morphologies, while the spherical aggregates eventually disappeared during in situ measurements. Arc-Aβ(1-40) was also shown to form fibrils at much lower concentrations than wt-Aβ(1-40): ≤2.5μM and 12.5μM, respectively. Moreover, at the same concentration, 50μM, the aggregation process proceeds more rapidly for arc-Aβ(1-40): the first amyloid fibrils were observed after c.a. 72h from the onset of incubation as compared to approximately 7days for wt-Aβ(1-40). Amyloid fibrils of arc-Aβ(1-40) exhibit a large variety of polymorphs, at least five, both coiled and non-coiled distinct fibril structures were recognized by AFM, while at least four types of arc-Aβ(1-40) fibrils were identified by TEM and STEM and their mass-per-length statistics were collected suggesting supramolecular structures with two, four and six β-sheet laminae. Our results suggest a pathway of fibrillogenesis for full-length Alzheimer's peptides with small and structurally ordered transient spherical aggregates as on-pathway immediate precursors of amyloid fibrils. © 2012 Elsevier Inc

    Self-diffusion and interactions in mixtures of imidazolium bis(mandelato)borate ionic liquids with polyethylene glycol: <sup>1</sup>H NMR study

    Get PDF
    Copyright © 2015 John Wiley & Sons, Ltd. We used 1H nuclear magnetic resonance pulsed-field gradient to study the self-diffusion of polyethylene glycol (PEG) and ions in a mixture of PEG and imidazolium bis(mandelato)borate ionic liquids (ILs) at IL concentrations from 0 to 10 and temperatures from 295 to 370. PEG behaves as a solvent for these ILs, allowing observation of separate lines in 1H NMR spectra assigned to the cation and anion as well as to PEG. The diffusion coefficients of PEG, as well as the imidazolium cation and bis(mandelato)borate (BMB) anion, differ under all experimental conditions tested. This demonstrates that the IL in the mixture is present in at least a partially dissociated state, while the lifetimes of the associated states of the ions and ions with PEG are less than 30ms. Generally, increasing the concentration of the IL leads to a decrease in the diffusion coefficients of PEG and both ions. The diffusion coefficient of the anion is less than that of the cation; the molecular mass dependence of diffusion of ions can be described by the Stokes-Einstein model. NMR chemical shift alteration analysis showed that the presence of PEG changes mainly the chemical shifts of protons belonging to imidazole ring of the cation, while chemical shifts of protons of anions and PEG remain unchanged. This demonstrated that the imidazolium cation interacts mainly with PEG, which most probably occurs through the oxygen of PEG and the imidazole ring. The BMB anion does not strongly interact with PEG, but it may be indirectly affected by PEG through interaction with the cation, which directly interacts with PEG

    Self-diffusion and interactions in mixtures of imidazolium bis(mandelato)borate ionic liquids with polyethylene glycol: 1H NMR study

    Get PDF
    © 2015 John Wiley & Sons, Ltd. We used 1H nuclear magnetic resonance pulsed-field gradient to study the self-diffusion of polyethylene glycol (PEG) and ions in a mixture of PEG and imidazolium bis(mandelato)borate ionic liquids (ILs) at IL concentrations from 0 to 10wt% and temperatures from 295 to 370K. PEG behaves as a solvent for these ILs, allowing observation of separate lines in 1H NMR spectra assigned to the cation and anion as well as to PEG. The diffusion coefficients of PEG, as well as the imidazolium cation and bis(mandelato)borate (BMB) anion, differ under all experimental conditions tested. This demonstrates that the IL in the mixture is present in at least a partially dissociated state, while the lifetimes of the associated states of the ions and ions with PEG are less than ~30ms. Generally, increasing the concentration of the IL leads to a decrease in the diffusion coefficients of PEG and both ions. The diffusion coefficient of the anion is less than that of the cation; the molecular mass dependence of diffusion of ions can be described by the Stokes-Einstein model. NMR chemical shift alteration analysis showed that the presence of PEG changes mainly the chemical shifts of protons belonging to imidazole ring of the cation, while chemical shifts of protons of anions and PEG remain unchanged. This demonstrated that the imidazolium cation interacts mainly with PEG, which most probably occurs through the oxygen of PEG and the imidazole ring. The BMB anion does not strongly interact with PEG, but it may be indirectly affected by PEG through interaction with the cation, which directly interacts with PEG

    Towards a Pharmacophore for Amyloid

    Get PDF
    Diagnosing and treating Alzheimer's and other diseases associated with amyloid fibers remains a great challenge despite intensive research. To aid in this effort, we present atomic structures of fiber-forming segments of proteins involved in Alzheimer's disease in complex with small molecule binders, determined by X-ray microcrystallography. The fiber-like complexes consist of pairs of β-sheets, with small molecules binding between the sheets, roughly parallel to the fiber axis. The structures suggest that apolar molecules drift along the fiber, consistent with the observation of nonspecific binding to a variety of amyloid proteins. In contrast, negatively charged orange-G binds specifically to lysine side chains of adjacent sheets. These structures provide molecular frameworks for the design of diagnostics and drugs for protein aggregation diseases

    A new era for understanding amyloid structures and disease

    Get PDF
    The aggregation of proteins into amyloid fibrils and their deposition into plaques and intracellular inclusions is the hallmark of amyloid disease. The accumulation and deposition of amyloid fibrils, collectively known as amyloidosis, is associated with many pathological conditions that can be associated with ageing, such as Alzheimer disease, Parkinson disease, type II diabetes and dialysis-related amyloidosis. However, elucidation of the atomic structure of amyloid fibrils formed from their intact protein precursors and how fibril formation relates to disease has remained elusive. Recent advances in structural biology techniques, including cryo-electron microscopy and solid-state NMR spectroscopy, have finally broken this impasse. The first near-atomic-resolution structures of amyloid fibrils formed in vitro, seeded from plaque material and analysed directly ex vivo are now available. The results reveal cross-β structures that are far more intricate than anticipated. Here, we describe these structures, highlighting their similarities and differences, and the basis for their toxicity. We discuss how amyloid structure may affect the ability of fibrils to spread to different sites in the cell and between organisms in a prion-like manner, along with their roles in disease. These molecular insights will aid in understanding the development and spread of amyloid diseases and are inspiring new strategies for therapeutic intervention

    Self-diffusion of phosphonium Bis(Salicylato)Borate ionic liquid in pores of Vycor porous glass

    No full text
    © 2016 Elsevier Inc. All rights reserved.1H NMR pulsed field gradient was used to study self-diffusion of a phosphonium bis(salicylato)borate ionic liquid ([P6,6,6,14][BScB]) in the pores of Vycor porous glass at 296 K. Confinement in pores increases diffusion coefficients of the ions by a factor of 35. However, some [P6,6,6,14][BScB] ions demonstrated apparent diffusion coefficients much lower than their mean values, which may be due to partially restricted diffusion of the ions. We suggest that this fraction corresponds to areas where ions are confined by pore 'necks' (micropores) and empty voids. Heating of the ionic liquid/Vycor system at 330 K led to a change in the diffusivity of the ions, because of their redistribution in the pores. The size of the bounded regions is on the order of 1 μm, as estimated from the dependence of the ion diffusivity on the diffusion time

    Self-diffusion of phosphonium Bis(Salicylato)Borate ionic liquid in pores of Vycor porous glass

    No full text
    © 2016 Elsevier Inc. All rights reserved.1H NMR pulsed field gradient was used to study self-diffusion of a phosphonium bis(salicylato)borate ionic liquid ([P6,6,6,14][BScB]) in the pores of Vycor porous glass at 296 K. Confinement in pores increases diffusion coefficients of the ions by a factor of 35. However, some [P6,6,6,14][BScB] ions demonstrated apparent diffusion coefficients much lower than their mean values, which may be due to partially restricted diffusion of the ions. We suggest that this fraction corresponds to areas where ions are confined by pore 'necks' (micropores) and empty voids. Heating of the ionic liquid/Vycor system at 330 K led to a change in the diffusivity of the ions, because of their redistribution in the pores. The size of the bounded regions is on the order of 1 μm, as estimated from the dependence of the ion diffusivity on the diffusion time
    • …
    corecore