22 research outputs found
Ecological significance of Synergistetes in the biological treatment of tuna cooking wastewater by an anaerobic sequencing batch reactor
Lab-scale 2L-anaerobic sequencing batch reactor was operated under mesothermic conditions. The degradation of protein-rich organic matter was determined by chemical oxygen demand, biogas production, and protein-removal activity over the operation. The structure of the microbial community was determined by qPCR and next-generation sequencing on 16S rRNA genes. At the steady state, a very efficient removal of protein (92 %) was observed. Our results demonstrate a decrease of archaeal and bacterial abundance over time. Members of the phylum Synergistetes, with a peculiar emphasis for those pertaining to families Dethiosulfovibrionaceae and Aminiphilaceae, are of major ecological significance regarding the treatment of this industrial wastewater. The prominent role to be played by members of the phylum Synergistetes regarding protein and/or amino acid degradation is discussed
Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest
It was hypothesized that seasonality and resource availability altered through tree girdling were major determinants of the phylogenetic composition of the archaeal and bacterial community in a temperate beech forest soil. During a 2-year field experiment, involving girdling of beech trees to intercept the transfer of easily available carbon (C) from the canopy to roots, members of the dominant phylogenetic microbial phyla residing in top soils under girdled versus untreated control trees were monitored at bimonthly intervals through 16S rRNA gene-based terminal restriction fragment length polymorphism profiling and quantitative PCR analysis. Effects on nitrifying and denitrifying groups were assessed by measuring the abundances of nirS and nosZ genes as well as bacterial and archaeal amoA genes. Seasonal dynamics displayed by key phylogenetic and nitrogen (N) cycling functional groups were found to be tightly coupled with seasonal alterations in labile C and N pools as well as with variation in soil temperature and soil moisture. In particular, archaea and acidobacteria were highly responsive to soil nutritional and soil climatic changes associated with seasonality, indicating their high metabolic versatility and capability to adapt to environmental changes. For these phyla, significant interrelations with soil chemical and microbial process data were found suggesting their potential, but poorly described contribution to nitrification or denitrification in temperate forest soils. In conclusion, our extensive approach allowed us to get novel insights into effects of seasonality and resource availability on the microbial community, in particular on hitherto poorly studied bacterial phyla and functional groups
Global niche of marine anaerobic metabolisms expanded by particle microenvironments
In ocean waters, anaerobic microbial respiration should be confined to the anoxic waters found in coastal regions and tropical oxygen minimum zones, where it is energetically favourable. However, recent molecular and geochemical evidence has pointed to a much broader distribution of denitrifying and sulfate-reducing microbes. Anaerobic metabolisms are thought to thrive in microenvironments that develop inside sinking organic aggregates, but the global distribution and geochemical significance of these microenvironments is poorly understood. Here, we develop a new size-resolved particle model to predict anaerobic respiration from aggregate properties and seawater chemistry. Constrained by observations of the size spectrum of sinking particles, the model predicts that denitrification and sulfate reduction can be sustained throughout vast, hypoxic expanses of the ocean, and could explain the trace metal enrichment observed in particles due to sulfide precipitation. Globally, the expansion of the anaerobic niche due to particle microenvironments doubles the rate of water column denitrification compared with estimates based on anoxic zones alone, and changes the sensitivity of the marine nitrogen cycle to deoxygenation in a warming climate