493 research outputs found

    Exploring noise effects in chaotic optical networks

    Get PDF
    We report the experimental evidence coherence and stochastic resonance in a dynamics of fast chaotic spiking of a semiconductor laser with optical feedback using an external nonwhite noise in the pumping current. We characterize both coherence and stochastic resonance in the time and frequency domain. We show that the regularity of the chaotic pulses in the intensity of laser diod increases when adding noise and it is optimal for some intermediate value of the noise intensity. We find that the power spectrum of the signal develops a peak at a finite frequency at intermediate values of the noise. The results show that noise may help in extracting the periodic signal without synchronization in chaotic communication. Then we reported the effect of external noise numerically on a single system by using bifurcation diagram. Finally, we considered Chaos synchronization in a network of 28 distinct chaotic systems with independent initial conditions when a normal Gaussian noise is added. The transition between non-synchronization to synchronization states using a suitable spatio-temporal representation has been reported. The role of coherence has also been considered. Keywords: Coherence resonance, Stochastic resonance, Control, Nois

    Ultrasound-guided laser ablation after excisional vacuum-assisted breast biopsy for small malignant breast lesions: Preliminary results

    Get PDF
    Background: The purpose of this preliminary study is to evaluate the feasibility of the excisional ultrasound (US) guided vacuum-assisted breast biopsy (VAE), followed by US-guided Laser Interstitial Thermal Therapy (LITT) in the treatment of unifocal ductal breast carcinomas ≤ 1 cm and estimate the ablation rate analyzing the final histopathological results after subsequent surgical excision. Methods: In a single session 11 female patients with unifocal less than a centimeter breast cancer underwent 2 different minimally invasive percutaneous US-guided techniques: a VAE breast biopsy with an 8 G needle to remove the lesion and, immediately after, a LITT ablation in the biopsy site. Four weeks later, all patients underwent radiological follow-up. Afterward, a systematic surgery was performed, the ablation rate was calculated, and iconographic and histological features were correlated. Results: Average maximum diameter of the lesions was 7.6 mm (5-10 mm). No patient reported pain or discomfort during procedure. 1/11 patient (9.1%) reported an early minor complication (a small superficial skin burn). After surgical excision, the histopathological evaluation reported in 10/11 cases (90.9%) complete ablation of the target lesion. In only one case (9.1%) residual cancer was detected. The necrotic-hemorrhagic cavities showed a mean maximum diameter of 27.3 mm (20-35 mm). Conclusions: Laser ablation performed after excisional biopsy could be considered a valid alternative to surgical excision for the treatment of lesions ≤ 1 cm, if carried out by expert radiologists. The association of these minimally invasive percutaneous methods has proven to be reliable, fast, and safe with an ablation rate of 90.9% and excellent aesthetic results. RM and CESM are potentially able to quantifying treatment results and to follow-up the ablation effects

    Beam test calibration of the balloon-borne imaging calorimeter for the CREAM experiment

    Full text link
    CREAM (Cosmic Ray Energetics And Mass) is a multi-flight balloon mission designed to collect direct data on the elemental composition and individual energy spectra of cosmic rays. Two instrument suites have been built to be flown alternately on a yearly base. The tungsten/Sci-Fi imaging calorimeter for the second flight, scheduled for December 2005, was calibrated with electron and proton beams at CERN. A calibration procedure based on the study of the longitudinal shower profile is described and preliminary results of the beam test are presented.Comment: 4 pages, 4 figures. To be published in the Proceedings of 29th International Cosmic Ray Conference (ICRC 2005), Pune, India, August 3-10, 200

    Reconfigurable chaos in electro-optomechanical system with negative Duffing resonators

    Get PDF
    Generating various laser sources is important in the communication systems. We propose an approach that uses a mechanical resonator coupled with the optical fibre system to produce periodic and chaotic optical signals. The resonator is structured in such a way that the nonlinear oscillation occurs conveniently. The mechanical apparatus in the configuration is the well known resonating system featured by the negative stiffness. The mechanical resonance is converted to reflected optical signal with the same dynamic properties as the mechanical oscillation, subsequently interacting with the optical signal within the optical fibre. The optical radiative force on the mechanical structure is also considered in the analysis. The coupled electro-optomechanical system has been analysed, and results show that the mechanical resonator has the capability to control the dynamics of the optical signal precisely. The system will have potential applications in tunable laser sources

    Theoretical study of lepton events in the atmospheric neutrino experiments at SuperK

    Full text link
    Super-Kamiokande has reported the results for the lepton events in the atmospheric neutrino experiment. These results have been presented for a 22.5kT water fiducial mass on an exposure of 1489 days, and the events are divided into sub-GeV, multi-GeV and PC events. We present a study of nuclear medium effects in the sub-GeV energy region of atmospheric neutrino events for the quasielastic scattering, incoherent and coherent pion production processes, as they give the most dominant contribution to the lepton events in this energy region. We have used the atmospheric neutrino flux given by Honda et al. These calculations have been done in the local density approximation. We take into account the effect of Pauli blocking, Fermi motion, Coulomb effect, renormalization of weak transition strengths in the nuclear medium in the case of the quasielastic reactions. The inelastic reactions leading to production of leptons along with pions is calculated in a Δ\Delta - dominance model by taking into account the renormalization of Δ\Delta properties in the nuclear medium and the final state interaction effects of the outgoing pions with the residual nucleus. We present the results for the lepton events obtained in our model with and without nuclear medium effects, and compare them with the Monte Carlo predictions used in the simulation and the experimentally observed events reported by the Super-Kamiokande collaboration.Comment: 23 pages, 13 figure

    First bounds on the very high energy gamma-ray emission from Arp 220

    Get PDF
    Using the Major Atmospheric Gamma Imaging Cherenkov Telescope (MAGIC), we have observed the nearest ultra-luminous infrared galaxy Arp 220 for about 15 hours. No significant signal was detected within the dedicated amount of observation time. The first upper limits to the very high energy γ\gamma-ray flux of Arp 220 are herein reported and compared with theoretical expectations.Comment: Accepted for publication in Ap

    The Effect of coronavirus (COVID-19) on breast cancer teamwork: A multicentric survey

    Get PDF
    Background/Aim: Despite the large amount of clinical data available of Coronavirus-19 (COVID-19), not many studies have been conducted about the psychological toll on Health Care Workers (HCWs). Patients and Methods: In this multicentric descriptive study, surveys were distributed among 4 different Breast Cancer Centers (BCC). BCCs were distinguished according to COVID-19 tertiary care hospital (COVID/No-COVID) and district prevalence (DP) (High vs. Low). DASS-21 score, PSS score and demographic data (age, sex, work) were evaluated. Results: A total of 51 HCWs were analyzed in the study. Age, work and sex did not demonstrate statistically significant values. Statistically significant distribution was found between DASS-21-stress score and COVID/No-COVID (p=0.043). No difference was found in the remaining DASS-21 and PSS scores, dividing the HCWs according to COVID-19-hospital and DP. Conclusion: Working in a COVID-19-hospital represents a factor that negatively affects psychosocial wellbeing. However, DP seems not to affect the psychosocial well-being of BCC HCWs. During the outbreak, psychological support for low risk HCWs should be provided regardless DP

    MAGIC observations of very high energy gamma-rays from HESS J1813-178

    Get PDF
    Recently, the HESS collaboration has reported the detection of gamma-ray emission above a few hundred GeV from eight new sources located close to the Galactic Plane. The source HESS J1813-178 has sparked particular interest, as subsequent radio observations imply an association with SNR G12.82-0.02. Triggered by the detection in VHE gamma-rays, a positionally coincident source has also been found in INTEGRAL and ASCA data. In this Letter we present MAGIC observations of HESS J1813-178, resulting in the detection of a differential gamma-ray flux consistent with a hard-slope power law, described as dN/(dA dt dE) = (3.3+/-0.5)*10^{-12} (E/TeV)^{-2.1+/-0.2} cm^(-2)s^(-1)TeV^(-1). We briefly discuss the observational technique used, the procedure implemented for the data analysis, and put this detection in the perspective of multifrequency observations.Comment: Accepted by ApJ Letter

    Constraints on the steady and pulsed very high energy gamma-ray emission from observations of PSR B1951+32/CTB 80 with the MAGIC Telescope

    Get PDF
    We report on very high energy gamma-observations with the MAGIC Telescope of the pulsar PSR B1951+32 and its associated nebula, CTB 80. Our data constrain the cutoff energy of the pulsar to be less than 32 GeV, assuming the pulsed gamma-ray emission to be exponentially cut off. The upper limit on the flux of pulsed gamma-ray emission above 75 GeV is 4.3*10^-11 photons cm^-2 sec^-1, and the upper limit on the flux of steady emission above 140 GeV is 1.5*10^-11 photons cm^-2 sec^-1. We discuss our results in the framework of recent model predictions and other studies.Comment: 7 pages, 7 figures, replaced with published versio
    corecore