62 research outputs found

    Generalized Gravi-Electromagnetism

    Full text link
    A self consistant and manifestly covariant theory for the dynamics of four charges (masses) (namely electric, magnetic, gravitational, Heavisidian) has been developed in simple, compact and consistent manner. Starting with an invariant Lagrangian density and its quaternionic representation, we have obtained the consistent field equation for the dynamics of four charges. It has been shown that the present reformulation reproduces the dynamics of individual charges (masses) in the absence of other charge (masses) as well as the generalized theory of dyons (gravito - dyons) in the absence gravito - dyons (dyons). key words: dyons, gravito - dyons, quaternion PACS NO: 14.80H

    High field hybrid photoinjector electron source for advanced light source applications

    Get PDF
    The production of high spectral brilliance radiation from electron beam sources depends critically on the electron beam qualities. One must obtain very high electron beam brightness, implying simultaneous high peak current and low emittance. These attributes are enabled through the use of very high field acceleration in a radio-frequency (rf) photoinjector source. Despite the high fields currently utilized, there is a limit on the achievable peak current in high brightness operation, in the range of tens of Ampere. This limitation can be overcome by the use of a hybrid standing wave/traveling wave structure; the standing wave portion provides acceleration at a high field from the photocathode, while the traveling wave part yields strong velocity bunching. This approach is explored here in a C-band scenario, at field strengths (>100 MV/m) at the current state-of-the-art. It is found that one may arrive at an electron beam with many hundreds of Amperes with well-sub-micron normalized emittance. This extremely compact injector system also possesses attractive simplification of the rf distribution system by eliminating the need for an rf circulator. We explore the use of this device in a compact 400 MeV-class source, driving both inverse Compton scattering and free-electron laser radiation sources with unique, attractive properties

    An Ultra-Compact X-Ray Free-Electron Laser

    Get PDF
    In the field of beam physics, two frontier topics have taken center stage due to their potential to enable new approaches to discovery in a wide swath of science. These areas are: advanced, high gradient acceleration techniques, and x-ray free electron lasers (XFELs). Further, there is intense interest in the marriage of these two fields, with the goal of producing a very compact XFEL. In this context, recent advances in high gradient radio-frequency cryogenic copper structure research have opened the door to the use of surface electric fields between 250 and 500 MV/m. Such an approach is foreseen to enable a new generation of photoinjectors with six-dimensional beam brightness beyond the current state-of-the-art by well over an order of magnitude. This advance is an essential ingredient enabling an ultra-compact XFEL (UC-XFEL). In addition, one may accelerate these bright beams to GeV scale in less than 10 meters. Such an injector, when combined with inverse free electron laser-based bunching techniques can produce multi-kA beams with unprecedented beam quality, quantified by ~50 nm-rad normalized emittances. These beams, when injected into innovative, short-period (1-10 mm) undulators uniquely enable UC-XFELs having footprints consistent with university-scale laboratories. We describe the architecture and predicted performance of this novel light source, which promises photon production per pulse of a few percent of existing XFEL sources. We review implementation issues including collective beam effects, compact x-ray optics systems, and other relevant technical challenges. To illustrate the potential of such a light source to fundamentally change the current paradigm of XFELs with their limited access, we examine possible applications in biology, chemistry, materials, atomic physics, industry, and medicine which may profit from this new model of performing XFEL science.Comment: 80 pages, 24 figure

    Achievements and new knowledge unraveled by metagenomic approaches

    Get PDF
    Metagenomics has paved the way for cultivation-independent assessment and exploitation of microbial communities present in complex ecosystems. In recent years, significant progress has been made in this research area. A major breakthrough was the improvement and development of high-throughput next-generation sequencing technologies. The application of these technologies resulted in the generation of large datasets derived from various environments such as soil and ocean water. The analyses of these datasets opened a window into the enormous phylogenetic and metabolic diversity of microbial communities living in a variety of ecosystems. In this way, structure, functions, and interactions of microbial communities were elucidated. Metagenomics has proven to be a powerful tool for the recovery of novel biomolecules. In most cases, functional metagenomics comprising construction and screening of complex metagenomic DNA libraries has been applied to isolate new enzymes and drugs of industrial importance. For this purpose, several novel and improved screening strategies that allow efficient screening of large collections of clones harboring metagenomes have been introduced

    Ecological strategy for soil contaminated with mercury

    Get PDF
    Aims The paper presents results from plot experiments aimed at the development of an ecological strategy for soil contaminated with mercury. Meadow grass (Poa pratensis) was tested on mercury contaminated soil in a former chlor-alkali plant (CAP) in southern Poland for its phytoremediation potential. Methods The stabilisation potential of the plants was investigated on plots without additives and after the addition of granular sulphur. Biomass production, uptake and distribution of mercury by plants, as well as leachates and rhizosphere microorganisms were investigated, along with the growth and vitality of plants during one growing season. Results The analysed plants grew easily on mercury contaminated soil, accumulating lower amounts of mercury, especially in the roots, from soil with additive of granular sulphur (0.5 % w/w) and sustained a rich microbial population in the rhizosphere. After amendment application the reduction of Hg evaporation was observed. Conclusions The obtained results demonstrate the potential of using Poa pratensis and sulphur for remediation of mercury contaminated soil and reduction of the Hg evaporation from soil. In the presented study, methods of Hg reduction on “hot spots” were proposed, with a special focus on environmental protection. This approach provides a simple remediation tool for large areas heavily contaminated with mercury
    corecore