29 research outputs found

    Direct imaging with highly diluted apertures. II. Properties of the point spread function of a hypertelescope

    Full text link
    In the future, optical stellar interferometers will provide true images thanks to larger number of telescopes and to advanced cophasing subsystems. These conditions are required to have sufficient resolution elements (resel) in the image and to provide direct images in the hypertelescope mode. It has already been shown that hypertelescopes provide snapshot images with a significant gain in sensitivity without inducing any loss of the useful field of view for direct imaging applications. This paper aims at studying the properties of the point spread functions of future large arrays using the hypertelescope mode. Numerical simulations have been performed and criteria have been defined to study the image properties. It is shown that the choice of the configuration of the array is a trade-off between the resolution, the halo level and the field of view. A regular pattern of the array of telescopes optimizes the image quality (low halo level and maximum encircled energy in the central peak), but decreases the useful field of view. Moreover, a non-redundant array is less sensitive to the space aliasing effect than a redundant array.Comment: 10 pages paper with referee in A&

    A test for the search for life on extrasolar planets: Looking for the terrestrial vegetation signature in the Earthshine spectrum

    Full text link
    We report spectroscopic observations (400 to 800nm, R = approx 100) of Earthshine in June, July and October 2001 from which normalised Earth albedo spectra have been derived. The resulting spectra clearly show the blue colour of the Earth due to Rayleigh diffusion in its atmosphere. They also show the signatures of oxygen, ozone and water vapour. We tried to extract from these spectra the signature of Earth vegetation. A variable signal (4 to 10 +/-3%) around 700nm has been measured in the Earth albedo. It is interpreted as being due to the vegetation red edge, expected to be between 2 to 10% of the Earth albedo at 700nm, depending on models. We discuss the primary goal of the present observations: their application to the detection of vegetation-like biosignatures on extrasolar planets.Comment: 7 pages, 7 figures. A&A, accepted 6 May 200

    Tests with a Carlina-type diluted telescope; Primary coherencing

    Full text link
    Studies are under way to propose a new generation of post-VLTI interferometers. The Carlina concept studied at the Haute- Provence Observatory is one of the proposed solutions. It consists in an optical interferometer configured like a diluted version of the Arecibo radio telescope: above the diluted primary mirror made of fixed cospherical segments, a helium balloon (or cables suspended between two mountains), carries a gondola containing the focal optics. Since 2003, we have been building a technical demonstrator of this diluted telescope. First fringes were obtained in May 2004 with two closely-spaced primary segments and a CCD on the focal gondola. We have been testing the whole optical train with three primary mirrors. The main aim of this article is to describe the metrology that we have conceived, and tested under the helium balloon to align the primary mirrors separate by 5-10 m on the ground with an accuracy of a few microns. The servo loop stabilizes the mirror of metrology under the helium balloon with an accuracy better than 5 mm while it moves horizontally by 30 cm in open loop by 10-20 km/h of wind. We have obtained the white fringes of metrology; i.e., the three mirrors are aligned (cospherized) with an accuracy of {\approx} 1 micron. We show data proving the stability of fringes over 15 minutes, therefore providing evidence that the mechanical parts are stabilized within a few microns. This is an important step that demonstrates the feasibility of building a diluted telescope using cables strained between cliffs or under a balloon. Carlina, like the MMT or LBT, could be one of the first members of a new class of telescopes named diluted telescopes.Comment: 18 pages, 17 figures, A&A, accepte

    On-sky MOAO performance evaluation of RAVEN

    Get PDF
    This paper presents the AO performance we got on-sky with RAVEN, a Multi-Object Adaptive Optics (MOAO) technical and science demonstrator installed and tested at the Subaru telescope. We report Ensquared-Energy (EE) and Full Width at Half Maximum (FWHM) measured from science images on Subaru's IRCS taken during all of the on-sky observing runs. We show these metrics as function of different AO modes and atmospheric conditions for two asterisms of natural guide stars. The performances of the MOAO and Ground-Layer AO (GLAO) modes are between the classical Single-Conjugate AO (SCAO) and seeing-limited modes. We achieve the EE of 30% in H-band with the MOAO correction, which is a science requirement for RAVEN. The MOAO provides sightly better performance than the GLAO mode in both asterisms. One of the reasons which cause this small difference between the MOAO and GLAO modes may be the strong GL contribution. Also, the performance of the MOAO modes is affected by the accuracy of the on-sky turbulence profiling by the SLOpe Detection And Ranging (SLODAR) method

    Using the multi-object adaptive optics demonstrator RAVEN to observe metal-poor stars in and towards the Galactic Centre

    Get PDF
    The chemical abundances for five metal-poor stars in and towards the Galactic bulge have been determined from the H-band infrared spectroscopy taken with the RAVEN multi-object adaptive optics science demonstrator and the Infrared Camera and Spectrograph at the Subaru 8.2-m telescope. Three of these stars are in the Galactic bulge and have metallicities between −2.1 < [Fe/H] < −1.5, and high [α/Fe] ∼ +0.3, typical of Galactic disc and bulge stars in this metallicity range; [Al/Fe] and [N/Fe] are also high, whereas [C/Fe] < +0.3. An examination of their orbits suggests that two of these stars may be confined to the Galactic bulge and one is a halo trespasser, though proper motion values used to calculate orbits are quite uncertain. An additional two stars in the globular cluster M22 show [Fe/H] values consistent to within 1σ, although one of these two stars has [Fe/H] = −2.01 ± 0.09, which is on the low end for this cluster. The [α/Fe] and [Ni/Fe] values differ by 2σ, with the most metal-poor star showing significantly higher values for these elements. M22 is known to show element abundance variations, consistent with a multipopulation scenario though our results cannot discriminate this clearly given our abundance uncertainties. This is the first science demonstration of multi-object adaptive optics with high-resolution infrared spectroscopy, and we also discuss the feasibility of this technique for use in the upcoming era of 30-m class telescope facilities

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    Coronagraphic imaging on the VLTI with VIDA

    No full text
    In a few years, the VLTI will be able to combine light from 4 to 8 telescopes equipped with adaptive optics. In order to exploit the full VLTI infrastructure, a second generation instrument, based on the densified pupil concept (VIDA), has been proposed for very high resolution direct imaging and coronagraphy. This paper presents some possible coronagraphic devices providing a total star extinction on the VLTI when there are no phase errors. Lastly, the expected performances considering cophasing and adaptive optics residual errors are also presented

    Pupil densification: a panorama

    No full text
    The technique of pupil densification bridges the gap existing between conventionnal optical astronomy observing techniques and optical interferometry: it indeed leads to the concept of hypertelescope: an instrument that can provide direct images at the focus of an interferometer. The hypertelescope is the open sesame for high dynamic imaging with an interferometer: indeed, the elementary remapping of the pupil operated by a densifier not only maximizes the dynamic range and the signal to noise ratio of images but also makes the interferometer compatible with most existing coronagraphic devices. Moreover, a careful discussion about field of view show that for a diluted array, the pupil densification preserves all the relevant high angular resolution information collected by the interferometer and therefore induces no field loss

    Optimization of the direct imaging properties of an optical fibered long baseline interferometer

    Get PDF
    Labeyrie (1996) has described the possibility of making direct snapshot images with interferometric arrays, leading to high dynamic imaging properties well suitable for stellar surface imaging and also for coronagraphy for exoplanets findin
    corecore