253 research outputs found

    The brittle-ductile transition in active volcanoes

    Get PDF
    Abstract Contrasting deformation mechanisms precede volcanic eruptions and control precursory signals. Density increase and high uplifts consistent with magma intrusion and pressurization are in contrast with dilatant responses and reduced surface uplifts observed before eruptions. We investigate the impact that the rheology of rocks constituting the volcanic edifice has on the deformation mechanisms preceding eruptions. We propose a model for the pressure and temperature dependent brittle-ductile transition through which we build a strength profile of the shallow crust in two idealized volcanic settings (igneous and sedimentary basement). We have performed finite element analyses in coupled thermo-hydro-mechanical conditions to investigate the influence of static diking on the local brittle-ductile transition. Our results show that in active volcanoes: (i) dilatancy is an appropriate indicator for the brittle-ductile transition; (ii) the predicted depth of the brittle-ductile transition agrees with the observed attenuated seismicity; (iii) seismicity associated with diking is likely to be affected by ductile deformation mode caused by the local temperature increase; (iv) if failure occurs within the edifice, it is likely to be brittle-dilatant with strength and stiffness reduction that blocks stress transfers within the volcanic edifice, ultimately damping surface uplifts

    A mixed finite element discretization scheme for a concrete carbonation model with concentration-dependent porosity

    Get PDF
    We discuss a prototypical reaction-diffusion-flow problem in saturated/unsaturated porous media. The special features of our problem are: the reaction produces water and therefore the flow and transport are coupled in both directions and moreover, the reaction may alter the microstructure. This means we have a variable porosity in our model. For the spatial discretization we propose a mass conservative scheme based on the mixed finite element method (MFEM). The scheme is semi-implicit in time. Error estimates are obtained for some particular cases. We apply our finite element methodology for the case of concrete carbonation – one of the most important physico-chemical processes affecting the durability of concrete

    MEVA - An interactive visualization application for validation of multifaceted meteorological data with multiple 3D devices

    No full text
    To achieve more realistic simulations, meteorologists develop and use models with increasing spatial and temporal resolution. The analyzing, comparing, and visualizing of resulting simulations becomes more and more challenging due to the growing amounts and multifaceted character of the data. Various data sources, numerous variables and multiple simulations lead to a complex database. Although a variety of software exists suited for the visualization of meteorological data, none of them fulfills all of the typical domain-specific requirements: support for quasi-standard data formats and different grid types, standard visualization techniques for scalar and vector data, visualization of the context (e.g., topography) and other static data, support for multiple presentation devices used in modern sciences (e.g., virtual reality), a user-friendly interface, and suitability for cooperative work
    • 

    corecore