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Abstract

We discuss a prototypical reaction-diffusion-flow problem in saturated/unsaturated porous me-
dia. The special features of our problem are: the reaction produces water and therefore the flow
and transport are coupled in both directions and moreover, the reaction may alter the microstructure.
This means we have a variable porosity in our model. For the spatial discretization we propose a
mass conservative scheme based on the mixed finite element method (MFEM). The scheme is semi-
implicit in time. Error estimates are obtained for some particular cases. We apply our finite element
methodology for the case of concrete carbonation – one of the most important physico-chemical
processes affecting the durability of concrete.

1 Introduction

We consider the following prototypical reaction–diffusion problem: A gaseous species Ã penetrates a
non-saturated porous medium via the air phase of its pore space and quickly dissolves in the pore water
where Ã reacts very fast with a species B̃. The species B̃ becomes available from the solid matrix by a
dissolution mechanism. The reaction produces a species C̃ which precipitates to the porous matrix. The
process can be summarized as

Ã(g→ ag) + B̃(s→ aq)→ C̃(aq→ s) + H2O. (1)

If the species Ã, B̃, and C̃ are CO2, Ca(OH)2, and respectively, CaCO3, then the reaction is called
carbonation and is one of the most important processes limiting the service life of concrete structures.
We refer to [18, 26] for a concise description of the details of the involved cement chemistry, of existing
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and Research Germany (BMBF). This support is gratefully acknowledged.
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isoline models for concrete carbonation, and of the parametric regimes when both the reaction rate of
(1) and the Henry-type transfer of species Ã from the gaseous phase to the liquid phase (and vice versa)
can be assumed to be fast. For closely related settings arising in geochemistry, see e. g. [8, 25].

Scenarios described by reaction (1) can incorporate changes in the pore volume induced by a dif-
ference in the densities of B̃ and C̃. Such structural changes may locally clog the pores by a strong
localized precipitation of C̃. In this sense we refer to [16, 21, 22, 23] for the derivation, analysis and
upscaling of mathematical models leading to dynamic, solution dependent change of the pore volumes
due to dissolution and precipitation processes, or biofilm growth encountered at the pore scale. Note
also that due to (1) some water is produced as well. Assuming (1) to be fast (in the spirit of [11] (chapter
II.5), e.g.), we expect the occurrence of localized productions of water. If, on the other hand, the pro-
duction is also strong, then a barrier of water might stop the penetration of the gaseous species Ã [18].
The challenge is to investigate under which circumstances (i.e. parameter ranges, boundary conditions,
model for porosity, etc.) the clogging of the pores and the water barrier effect can take place.

The need of an adequate approximation of the fluid flow by mixed finite element method (MFEM)
has been recognized in the water resources literature since several decades, see, e.g., [19]. This method
offers the advantage of local mass conservation and continuous flux approximations over the element
faces. However, for associated solute transport problems normally conventional methods are applied,
e.g. conforming finite element method [3, 5], finite volume [15, 24], discontinuous Galerkin [30] or
method of characteristics [14]. In [27, 28] a scheme based on MFEM is proposed also for multicom-
ponent, reactive solute transport in soil. More precisely, the lowest order Raviart-Thomas elements are
used. There, the coupling was only in one direction, so the flow equation could be solved separately.
In this work we extend the scheme presented in [27, 28] for reactive transport in porous media with
concentration-dependent porosity. Thus we introduce and analyze a novel formulation of a coupled
reactive multicomponent transport model and flow with variable porosity in a MFEM setting.

The paper is structured as follows. In Section 2, we present the model equations for the reaction-
diffusion-flow problem with concentration-dependent porosity indicated above. The main results of the
paper are the subject of Section 3 (a numerical scheme for a reduced PDE system, including some error
estimates and convergence of the method). Finally, we solve the reduced PDE system and illustrate its
behavior in the fast-reaction limit in Section 4. We conclude with some discussions in Section 5.

2 Model equations

We consider a porous medium occupying a domain Y in IRd, d = 2 or 3 and having the boundary ∂Y .
We denote by Ω a reference elementary volume of our (homogeneous) material, and by Ωp and Ωs the
volume occupied by the pores and the matrix volume, respectively. Denote by |Ω′| the volume of a region
Ω′ ⊂ Ω. Then φ :=

|Ωp|
|Ω| is the porosity of the medium, while φs := 1 − φ is the corresponding solid

fraction. Furthermore, φw := |Ωw|
|Ωp| and φg :=

|Ωg |
|Ωp| is the water and respectively gas fraction. Clearly,

φw+φg = 1. Furthermore, we denote by a, A, b, B, c, and C the (microscopic) molar concentrations of
the species Ã(g), Ã(aq), B̃(s), B̃(ag), C̃(s), and C̃(ag). Further, let J = (0, T ] the time interval, with
T denoting a finite end time.

2.1 Productions by reaction (1), precipitation, and dissolution

We refer to [11] for the mathematical modeling of reactive porous media flows. In particular, dissolution
and precipitation Darcy-scale models are proposed in [12]. Such models can be derived rationally from
pore scale models (as proposed e. g. in [10, 22]) by upscaling techniques [16, 21], allowing to include the
variations in the porosity (including clogging) as the result of precipitation or dissolution. To maintain
the discussion brief we let γ denote the reaction rate associated to (1). Here we assume

γ := rφφwA
pBq, (2)



where the constant r > 0 has here a very large value. p, q ∈ R are partial orders of reaction that are
equal or greater than unity. Throughout this work we take p = q = 1. The equation (2) is sometimes
called generalized mass-action law. Large values of r indicate the fast-reaction regime. As production
rates by reaction we make use of

γi = σimiγ, (3)

where σi is the involved stoichiometric coefficient, while mi is the molecular weight of the species
i. In this paper we consider reaction (1), therefore we have σi = 1 for all species Ã, B̃ and C̃. The
production rates by precipitation and dissolution fPrec and fDiss are defined by means of deviations
from known equilibrium configurations. In this paper we choose fPrec(E) := SPrec(E − Ep,eq) and
fDiss(E) := SDiss(Ed,eq − E), where E is the molecular concentration of a given species. Here SPrec

and SDiss are given constants, while Ed,eq and Ep,eq are known equilibrium profiles. By the choice
above, a species Ẽ is dissolved as long as the concentration E is smaller than Ed,eq, and precipitates
when the concentration E exceeds Ep,eq (see also [10, 12, 22]).

2.2 The water flux

For the mathematical modeling of the flow in porous media we follow [6]. Assuming that the gas
pressure is constant inside the pores, the flux of water q takes the form

q = −K(φφw)∇(p+ z), (4)

where K(φφw) = KSφk(φw), whereas KS stands for the permeability of the saturated porous material
and k(φw) is the hydraulic conductivity, which is a function of φw. z denotes the height against the
gravitational direction. In this paper we assume the air pressure to be constant, and hence, p = −pc,
with pc denoting the capillary pressure. At equilibrium conditions (and fixed porosity), the water fraction
φw is a function of the capillary pressure:

φw = φw(pc). (5)

Typical curves are provided in the literature, such as the van Genuchten-Mualem class, or Brooks and
Corey. In this paper we use the van Genuchten-Mualem parameterization [13, 20] in the form

φw(p) = φw,max(1 + (−αp)n)−m, (6)

k(φw) =
√
φw(1− (1− φ

1

m
w )m)2, m = 1− 1

n
. (7)

2.3 Henry-type transfer at air/liquid interfaces

The species Ã enters the porous media via the air-filled parts of the pores and dissolves in water passing
through microscopic air/liquid interfaces. The easiest way to model this transfer from the air phase to
the water phase and vice versa is to rely on Raoult’s law or on Henry’s law. For modeling arguments,
see [17] or any textbook on physical chemistry. The use of Henry’s law implies that terms like

±P (HφφwA− φφga) (8)

will enter the right-hand side of the mass-balance equations for the concentrations a and A. In (8), P
is a mass-transfer coefficient, which is in most cases unknown and needs to be identified for instance
via a homogenization approach, and H is the Henry constant, whose value can be read off from existing
databases. Nevertheless, in this work we focus only on situations where the mass transfer across liquid-
air interfaces is very fast, i.e. P →∞ enforcing that

HφwA ≈ φga. (9)



2.4 Macroscopic balance laws

The set of mass-balance equations describing the situation depicted previously reads:

(φφw)t +∇ · q =
φφw
ρ
rAB, (10)

q = −KSφk(φw)∇(p+ z), (11)

(φφwA)t +∇ · (−DAφφw∇A+ qA) = −P (HφφwA− φφga)− rφφwmAAB, (12)

(φφga)t +∇ · (−Daφφg∇a) = P (HφφwA− φφga), (13)

(φφwB)t +∇ · (−DBφφw∇B + qB) = fDissφφw − rφφwmBAB, (14)

(φsb)t = −fDissφs, (15)

(φφwC)t +∇ · (−DCφφw∇C + qC) = −fPrecφφw + rφφwmCAB, (16)

(φsc)t = fPrecφs, (17)

φt = s(φ− δ) 1− φ
Zφ + (1− φ)

(φwfDiss − φwfPrec), (18)

where fDiss = SDiss(Beq − B) and fPrec = SPrec(C − Ceq). These equations are defined in every
(t,x) ∈ J×Y . The parameter s is just a switcher, for s = 0 the model is with constant porosity, whereas
for s 6= 0 we have a variable porosity. The porosity decreases through precipitation and increases due
to dissolution. Clearly, if (9) holds, then the mass-balance for a, i.e. (13) decouples from the rest of
the system and can be therefore ignored in what follows. We remark that also the equations (15) and
(17) are decoupled from the rest of the system and will be not considered in the next. Consequently,
we will solve the equations for the water flow (10)-(11), for A,B and C (12), (14) and (16) and for the
porosity (18). The numerical scheme based on MFEM is presented in Section 3. The initial conditions
are given by p|t=0 = pI , A|t=0 = AI , B|t=0 = BI , C|t=0 = CI , φ|t=0 = φI in Y. Boundary conditions
complete the model.

Remark 2.1 The rates on the right in the above model are only valid for physically reasonable regimes,
i.e. whenever A, B and C are non-negative.

Remark 2.2 Notice that if δ is a (small) strictly positive constant, then the clogging of the pores can-
not happen and the PDE system has a strongly non-linear, strongly coupled, and uniformly parabolic
structure. On the other hand, if δ = 0, then for some x and t the porosity φ(x, t) is zero. In such cases,
the PDE system becomes strongly degenerate; note that the reaction-infiltration problem discussed in
[9] exhibits a few conceptual similarities with our problem which we will exploit elsewhere. The term

1− φ
Zφ + (1− φ)

ensures us that the porosity remains bounded from above by 1, with Zφ being just a small

positive constant.

3 Numerical scheme based on MFEM

In order to state a MFEM scheme for the equations (10)-(11), (12), (14), (16) and (18) we have to
introduce first the total mass fluxes of A,B and C:

qA = −DAφφw∇A+ qA (19)

qB = −DBφφw∇B + qB (20)

qC = −DCφφw∇C + qC. (21)

In what follows we make use of common notations in the functional analysis. By 〈·, ·〉 we mean
the inner product on L2(Y ), or the duality pairing between H1

0 (Y ) and H−1(Y ). Further, ‖ · ‖ and
‖ · ‖1 stand for the norms in L2(Y ) and H1(Y ), respectively. The functions in H(div;Y ) are vector



valued, having a L2 divergence. By c we mean a positive constant, not depending on the unknowns or
the discretization parameters. We further use also the notation φw,I = φw(pI). Throughout this paper
we make use of the following assumptions:

(A1) The conductivity function k : [0, 1]→ R is strictly increasing, positive and Lipschitz continuous.

(A2) The initial concentrations AI , BI , and CI are bounded and non-negative. The initial pressure pI
is bounded.

(A3) For both continuous and discrete cases there holds 1 ≥ φφw ≥ β > 0, and φw is Lipschitz
continuous.

(A4) q,qA,qB,qC ∈ L∞(J × Y ) ∩ L2(J ;H1(Y )) and ∂tp, ∂tA, ∂tB, ∂tC ∈ L∞(J × Y ).

(A5) The reaction rates are Lipschitz continuous.

For simplicity, in this section we consider only homogeneous Dirichlet boundary conditions, but the
results can be extended to more general cases. Throughout this paper we assume that the system (10)-
(11), (12), (14), (16) and (18) complemented with boundary and initial conditions has a unique weak
solution. This solves the following problem:

Problem 3.1 (The continuous variational problem) Find p,A,B,C ∈ H1(J ;L2(Y )) and q,qA,qB,
qC ∈ L2(J ;H(div;Y )) with p|t=0 = pI , A|t=0 = AI , B|t=0 = BI , C|t=0 = CI , φ|t=0 = φI such that

〈(φφw)t, w〉+ 〈∇ · q, w〉 = 〈φφw
ρ
rAB,w〉, (22)

〈K−1(φφw)q,v〉 − 〈p,∇ · v〉+ 〈∇z,v〉 = 0, (23)

〈(φφwA)t, w〉+ 〈∇ · qA, w〉 = −〈rφφwmAAB,w〉, (24)

〈(DAφφw)−1qA,v〉 − 〈A,∇ · v〉 − 〈Aq,v〉 = 0, (25)

〈(φφwB)t, w〉+ 〈∇ · qB, w〉 = 〈fDissφφw, w〉 − 〈rφφwmBAB,w〉, (26)

〈(DBφφw)−1qB,v〉 − 〈B,∇ · v〉 − 〈Bq,v〉 = 0, (27)

〈(φφwC)t, w〉+ 〈∇ · qC , w〉 = −〈fPrecφφw, w〉+ 〈rφφwmCAB,w〉, (28)

〈(DCφφw)−1qC ,v〉 − 〈C,∇ · v〉 − 〈Cq,v〉 = 0, (29)

〈φt, w〉 = s〈(φ− δ)(1− φ)

Zφ + (1− φ)
(φwfDiss − φwfPrec), w〉(30)

for all w ∈ L2(Y ) and v ∈ H(div;Y ).

Referring strictly to the the Richards equation (22)–(23), existence and uniqueness results are ob-
tained e.g. in [1]. For the system (24)–(29), existence and uniqueness can be proven by following [28] at
least for the case when the diffusive flux does not contain φφw and the porosity is constant. These results
are not straightforwardly applicable to the entire system (22) - (30), which might degenerate, therefore
a further study is necessary.

For the time discretization we let N ∈ N be strictly positive, and define the time step τ = T/N , as
well as tn = nτ (n ∈ {1, 2, . . . , N}).Given a function f defined on the interval J , we write fn := f(tn).
Furthermore, we let Th be a regular decomposition of Y ⊂ Rd into closed d-simplices; h stands for the
mesh-size. Here we assume Y = ∪T∈ThT , hence Y is polygonal. We will use the discrete subspaces
Wh ⊂ L2(Y ) and Vh ⊂ H(div;Y ) defined as

Wh := {p ∈ L2(Y )| p is constant on each element T ∈ Th},

Vh := {q ∈ H(div;Y )| q|T = a + bx for all T ∈ Th}.
(31)



In other words, Wh denotes the space of piecewise constant functions, while Vh is the lowest order
Raviart-Thomas RT0 space (see [7]). We will use the following L2 projector (see [7]):

Ph : L2(Y )→Wh, 〈Phw − w,wh〉 = 0 for all w ∈ L2(Y ), wh ∈Wh. (32)

Applying a first order time stepping and MFEM, the fully discrete form of (22) - (30) reads

Problem 3.2 (The discrete variational problem) Let n ∈ {1, . . . , N}, and pn−1
h , An−1

h , Bn−1
h , Cn−1

h , φn−1
h

be given. Find pnh, A
n
h, B

n
h , C

n
h , φ

n
h ∈ Wh and qnh,qA

n
h,qB

n
h,qC

n
h ∈ Vh such that for all wh ∈ Wh and

vh ∈ Vh there holds

〈φnhφwnh − φn−1
h φw

n−1
h , wh〉+ τ〈∇ · qnh, wh〉 = τ〈r

ρ
φn−1
h φw

n−1
h An−1

h Bn−1
h , wh〉,(33)

〈K−1(φnhφw
n
h)qnh,vh〉 − 〈pnh,∇ · vh〉+ 〈∇z,vh〉 = 0, (34)

〈φnhφwnhAnh − φn−1
h φw

n−1
h An−1

h , wh〉+ τ〈∇ · qAnh, wh〉 = τ〈−mArφ
n
hφw

n
hA

n
hB

n
h , wh〉, (35)

〈 1

DAφnhφw
n
h

qA
n
h,vh〉 − 〈Anh,∇ · vh〉 − 〈Anhqnh,vh〉 = 0, (36)

〈φnhφwnhBn
h − φn−1

h φw
n−1
h Bn−1

h , wh〉+ τ〈∇ · qBnh, wh〉 = −τ〈mBrφ
n
hφw

n
hA

n
hB

n
h , wh〉

+τ〈φnhφwnhfDiss
n
h, wh〉, (37)

〈 1

DBφnhφw
n
h

qB
n
h,vh〉 − 〈Bn

h ,∇ · vh〉 − 〈Bn
hq

n
h,vh〉 = 0, (38)

〈φnhφwnhCnh − φn−1
h φw

n−1
h Cn−1

h , wh〉+ τ〈∇ · qCnh, wh〉 = τ〈mCrφ
n
hφw

n
hA

n
hB

n
h , wh〉

−τ〈φnhφwnhfPrec
n
h, wh〉, (39)

〈 1

DCφnhφw
n
h

qC
n
h,vh〉 − 〈Cnh ,∇ · vh〉 − 〈Cnhqnh,vh〉 = 0, (40)

and

〈φnh − φn−1
h , wh〉 = τs〈

(φn−1
h − δ)(1− φn−1

h )

Zφ + (1− φn−1
h )

(φw
n−1
h fDiss

n
h − φwn−1

h fPrec
n
h), wh〉, (41)

where φwkh := φw(pkh), fDiss
k
h = SDiss(Beq −Bk

h) and fPrec
k
h = SPrec(C

k
h − Ceq), k = 0, . . . , N .

Initially we take φ0
h = PhφI , p0

h so that holds φ0
hφw

0
h = Ph(φIφw,I) and A0

h =
Ph(φIφw,IAI)

φ0
hφw

0
h

,

B0
h =

Ph(φIφw,IBI)

φ0
hφw

0
h

and C0
h =

Ph(φIφw,ICI)

φ0
hφw

0
h

. The particular form of the initial data is allowed by

the lower bound on φφw and will be used when proving Theorem 3.1 below.
Note that the equation (41) and the reaction in (33) are explicit. This suggests the following solution

strategy, which has been adopted for the numerical calculations presented below. First of all, at each
time we get the porosity from (41) and then solve (33)–(34), which is now decoupled from the remain-
ing part of the system. Once a solution pair (pnh,q

n
h) is computed, one can proceed by determining

(Anh,qA
n
h), (Bn

h ,qB
n
h) and (Cnh ,qC

n
h) by solving (35)–(40).

The convergence of the scheme presented in Problem 3.2 can be shown for constant porosity (i.e.
s = 0) and strictly unsaturated flow, i.e. φ′w > 0 or fully saturated flow, e.g. φw = φw,max everywhere.
In the next we will give convergence results for these two cases. We also briefly outline the proof for
the former (which is by far much more interesting as the fully saturated case). The proof is based on
techniques from [2] and [28].



Theorem 3.1 (Strictly unsaturated flow) Let s = 0 and p,A,B,C ∈ H1(J ;L2(Y )) and q,qA,qB,
qC ∈ L2(J ;H(div;Y )) and pnh, A

n
h, B

n
h , C

n
h ∈ Wh, qnh,qA

n
h,qB

n
h,qC

n
h ∈ Vh solve Problem 3.1 and

Problem 3.2, respectively. Assuming (A1) – (A5), there holds

‖p(T )− pnh‖2 +

N∑
n=1

τ‖qn − qnh‖2 +
N∑
n=1

τ‖An −Anh‖2

+
N∑
n=1

τ‖Bn −Bn
h‖2 +

N∑
n=1

τ‖Cn − Cnh‖2 +
N∑
n=1

τ‖qAn − qA
n
h‖2

+
N∑
n=1

τ‖qBn − qB
n
h‖2 +

N∑
n=1

τ‖qCn − qC
n
h‖2 ≤ c(τ2 + h2).

(42)

Proof. Using the results from [29], which are obtained by the techniques from [2] one can show that
for strictly unsaturated flow we have

‖p(T )− pnh‖2 +
N∑
n=1

τ‖qn − qnh‖2 ≤ c(τ2 + h2)

+c(
N∑
n=1

τ‖An −Anh‖2 +
N∑
n=1

τ‖Bn −Bn
h‖2 +

N∑
n=1

τ‖pn − pnh‖2).

(43)

The next step is to prove a similar result for the remaining variables by applying the ideas in [28]. The
main difficulty is but the appearance of φw in the terms which should furnish the L2-norms of the flux
variables in equations (25), (27), (29) and their discrete counterparts (36), (38), (40). To cope with this
we use the elementary lemma

Lemma 3.1 For any vectors ak ∈ IRd and scalars bk ∈ IR, (k ∈ {1, . . . , N}, d ≥ 1) we have

2

N∑
n=1

〈bnan,
n∑
k=1

ak〉 = 〈bN
N∑
n=1

an,

N∑
n=1

an〉+
N∑
n=2

〈(bn−1 − bn)

n−1∑
k=1

ak,

n−1∑
k=1

ak〉+
N∑
n=1

〈bnan,an〉. (44)

The above lemma is an extension of the well known result for the case bk = 1, for all k ∈ {1, . . . , N}.
By following [28], using the lemma above and the assumed regularity for the solution one has

N∑
n=1

τ‖An −Anh‖2 +
N∑
n=1

τ‖Bn −Bn
h‖2 +

N∑
n=1

τ‖Cn − Cnh‖2

+
N∑
n=1

τ‖qAn − qA
n
h‖2 +

N∑
n=1

τ‖qBn − qB
n
h‖2 +

N∑
n=1

τ‖qCn − qC
n
h‖2

≤ c(τ2 + h2 +
N∑
n=1

τ‖qn − qnh‖2)

+c(
N∑
n=1

τ‖φw(pn)− φwnh‖2 +

N∑
n=1

∫ tn

tn−1

‖φw(p)− φwnh‖2)

+c(

N∑
n=1

τ2‖qAn − qA
n
h‖2 +

N∑
n=1

τ2‖qBn − qB
n
h‖2 +

N∑
n=1

τ2‖qCn − qC
n
h‖2).

(45)

By (43)–(45) and the discrete Gronwall Lemma we then get the result (42).
Q. E. D.



Theorem 3.2 (Fully saturated flow) In the strictly saturated flow regime, the result (42) becomes

max
n=1,...,N

‖pn − pnh‖2 +
N∑
n=1

τ‖q(tn)− qnh‖2 + max
n=1,...,N

‖An −Anh‖2

+ max
n=1,...,N

‖Bn −Bn
h‖2 + max

n=1,...,N
‖Cn − Cnh‖2 +

N∑
n=1

τ‖qAn − qA
n
h‖2

+
N∑
n=1

τ‖qBn − qB
n
h‖2 +

N∑
n=1

τ‖qCn − qC
n
h‖2 ≤ c(τ2 + h2).

(46)

4 Numerical illustration for the carbonation problem

We solve the equations (33)–(41) on Y := [0, 1]×[0, 1]. The initial pressure is given by p = 0.001(y−2).
The boundary condition for the water flow are: Left, Right: zero flux and Up: p = −0.001, Down:
p = −0.002 (so a flux is pointing downwards). For A,B and C we consider homogeneous Neumann
boundary conditions. For simplicity, we do not take any gravitation effects into account. As mentioned in
Section 2.2, we choose the parameterization of van Genuchten-Mualem as given in (6) – (7). The model
parameters are chosen such as: ρ = 1, KS = 2.0, φw,max = 0.5, α = 0.152, n = 4.0 SDiss = 0.0067,
Beq = 0.0075, SPrec = 0, Ceq = 0, DA = 1.0, DB = 0.0864 and DC = 0.000864. Further, we
have mA = 44,mB = 74,mC = 100.87 and the regularization parameters δ = 0.001, Zφ = 0.01. As
initial conditions we take A(x, 0) = 3 ∗ 10−3 on Y I

A , A(x, 0) = 0 on Y \ Y I
A, B(x, 0) = 0.0075 on

ΩI
B , B(x, 0) = 0 on Y \ Y I

B , and C(x, 0) = rA(x, 0)B(x, 0). For the porosity we take φI = 0.5. The
physical units in this section are grams, centimeters and years and are not written every time explicitly.
These values are realistic for the cement chemistry. For the initial domains ΩI

A and ΩI
B we consider

three scenarios

(V 1)

{
Y I
A = {(x, y) ∈ Y |y ≥ 0.5}
Y I
B = {(x, y) ∈ Y |y ≤ 0.53} (47)

(V 2)

{
Y I
A = {(x, y) ∈ Y |(y ≥ 0.5 + 0.4 ∗ x) ∨ (y ≥ 0.9− 0.4 ∗ x)}
Y I
B = Y \ Y I

A

(48)

(V 3)

{
Y I
A = {(x, y) ∈ Y |(y ≥ 0.5− 0.4 ∗ x) ∧ (y ≥ 0.1 + 0.4 ∗ x)}
Y I
B = Y \ Y I

A

(49)

Furthermore, A,B, and C are assumed to satisfy homogeneous Neumann boundary conditions across
all sides of the square Y . For the degradation rate r we take successively the values: 10, 100 and 1000.
We compute numerically the indicator

η(t) =

∫
Y
rA(x, t)B(x, t) dx. (50)

and the mass flux of the species i, i = A,B or C over the lower boundary ΓS (the outflow boundary,
given here by x = 0)

massi(t) =

∫
ΓS

qi · nd s. (51)

The numerical scheme (33)–(41) is implemented in the software package UG [4]. The computations
are done with a time step τ = 0.01, on a regular triangular mesh with a diameter h = 0.02 (5600 ele-
ments). For details of the implementation of the MFEM scheme for multicomponent, reactive transport
in saturated/unsaturated media we refer to [27].

Fig. 1 and Fig. 2 illustrate the typical behavior of the concentrations A,B and C for one of our
scenarios (V 3). As expected from the model equations, we notice the consumption of concentration
A and subsequent production of concentration C. We also notice that, when choosing r ≥ 10, we are
actually simulating a reaction-diffusion-flow process in its fast-reaction regime (a high-Thiele-modulus



regime). This can be observed comparing the almost ”complementarity” of the colors in Fig. 1 and
Fig. 2. More precisely, we observe a high production of species C in those regions where A is strongly
depleted. These pictures indicate therefore a separation in space of free A-molecules from B-molecules
that are combined in C products. For low flow regimes, relying on singular-limit analyses such as [31],
we expect that as r → ∞ the production of C will localize on free interfaces separating pockets with
A molecules from B-filled regions and η → 0. For all three scenarios V 1 − V 3 we observe an initial
increase of η till a maximum (the higher the peak, the higher the reaction rate r) and then a decrease
to zero, see Fig. 3 – 6. The steepest decrease we see for the highest rate, r = 1000, independent of
scenario. The behavior of η is very similar for all scenarios, see Fig. 3 – 6, the determinating facto being
the reaction rate r. For r = 1000 very small values of η are reached already after short times (from 0.5
for scenario V1 to 0.8 for scenario V3), which is a strong indication of a sharp separation of species A
and B, see Fig. 5 (right).

As one can see in Fig. 7 the model is very sensitive with respect to the dissolution rate SDiss (a
higher one implies much more production of the species B and also a higher maximum in η). In the
same picture we can see but there is almost no influence of the precipitation rate SPrec and of a variable
porosity (s = 1) on η. One reason for this is that the concentrations of A and B are relative small and so
also the production of C and therefore the precipitation effect is neglectable. The same was confirmed
also for a 1000-times higher water flux in Fig. 8 (left), where again is no difference on η between the
simulations with or without a variable porosity. We looked also at the mass fluxes of species A−C over
the outflow boundary, as explained in (51). The results are presented in Fig. 8 (right) and Fig. 9. There
is no difference between the computations with a variable porosity and the ones without (s = 0).

5 Discussion

We considered a mathematical model for a prototypical reaction-diffusion-flow scenario in variable sat-
urated porous media. The special features of our scenario are: the reaction produces water and therefore
the flow and transport are coupled in both directions and moreover, the reaction may alter the microstruc-
ture. This means we have a variable porosity in our model. For the spatial discretization we propose a
mass conservative scheme based on MFEM. More precisely, we use the lowest order Raviart-Thomas
elements. The scheme is semi-implicit in time. Error estimates are obtained for some particular cases.
We apply our finite element methodology for the case of concrete carbonation – one of the most impor-
tant physico-chemical processes affecting the durability of concrete. We performed a sensitivity analysis
by using realistic parameters from cement chemistry. The model is sensitive with respect to the reaction
rate r and dissolution rate SDiss. When the reaction rate r → ∞, the indicator η tends rapidly to zero,
therefore a sharp separation of the species A and B is documented. At least for the set of parameters we
used we see no (short time) influence of the precipitation rate SPrec and of a variable porosity. A reason
for this is that for the considered scenarios the concentration of the species C (which might precipitate)
is very, very small. A further study should follow.
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Figure 1: Concentration profiles of A,B and C at time T = 0.01, T = 0.1 and T = 1 for the scenario
V 3 with r = 10.



Figure 2: Concentration profiles of A,B and C at time T = 0.01, T = 0.1 and T = 1 for the scenario
V 3 with r = 1000.

Figure 3: The indicator η for scenario V 1 (left) and V 2 (right)



Figure 4: The indicator η for scenario V 3 (left) and r = 10 (right)

Figure 5: The indicator η for r = 100 (left) and for r = 1000 (right)

Figure 6: The indicator η for scenarios V 1− V 3 and rates r = 10, 100, 1000



Figure 7: The indicator η for V 3, rate r = 10, different dissolution and precipitation rates and with
(s = 1) or without (s = 0) variable porosity

Figure 8: Simulations for scenario V 3 with a 1000-times enhanced water flux for r = 10 and r = 100,
with (s = 1) or without (s = 0) variable porosity: the indicator η (left) and the mass flux of A over the
outflow boundary (right)

Figure 9: Simulations for scenario V 3 with a 1000-times enhanced water flux for r = 10 and r = 100,
with (s = 1) or without (s = 0) variable porosity: the mass flux of B over the lower boundary (left) and
the mass flux of C over the outflow boundary (right)
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