30 research outputs found
Shifting the Paradigm: The Putative Mitochondrial Protein ABCB6 Resides in the Lysosomes of Cells and in the Plasma Membrane of Erythrocytes
ABCB6, a member of the adenosine triphosphate–binding cassette (ABC) transporter family, has been proposed to be responsible for the mitochondrial uptake of porphyrins. Here we show that ABCB6 is a glycoprotein present in the membrane of mature erythrocytes and in exosomes released from reticulocytes during the final steps of erythroid maturation. Consistent with its presence in exosomes, endogenous ABCB6 is localized to the endo/lysosomal compartment, and is absent from the mitochondria of cells. Knock-down studies demonstrate that ABCB6 function is not required for de novo heme biosynthesis in differentiating K562 cells, excluding this ABC transporter as a key regulator of porphyrin synthesis. We confirm the mitochondrial localization of ABCB7, ABCB8 and ABCB10, suggesting that only three ABC transporters should be classified as mitochondrial proteins. Taken together, our results challenge the current paradigm linking the expression and function of ABCB6 to mitochondria
Phytochelatin synthase, a dipeptidyltransferase that undergoes multisite acylation with γ-glutamylcysteine during catalysis. Stoichiometric and site-directed mutagenic analysis of arabidopsis thaliana PCS1-catalyzed phytochelatin synthesis
Phytochelatin (PC) synthase has been assumed to be a γ-glutamylcysteine dipeptidyl transpeptidase (EC 2.3.2.15) and, more recently, as exemplified by analyses of the immunopurified recombinant enzyme from Arabidopsis thaliana (AtPCS1-FLAG), has been shown to catalyze a PC synthetic reaction with kinetics that approximates a bisubstrate-substituted enzyme mechanism in which millimolar concentrations of free GSH and micromolar concentrations of heavy metal·GSH thiolates (e.g. cadmium·GS2) or millimolar concentrations of S-alkylglutathiones serve as cosubstrates. Here, we show, by direct analyses of the stoichiometry of AtPCS1-FLAG-catalyzed PC synthesis, the kinetics and stoichiometry of acylation of the enzyme and release of free glycine from γ-Glu-Cys donors, and the effects of the Cys-to-Ser or -Ala and Ser-to-Ala substitution of conserved residues in the catalytic N-terminal half of the enzyme, that PC synthase is indeed a dipeptidyltransferase that undergoes γ-Glu-Cys acylation at two sites during catalysis, one of which, in accord with a cysteine protease model, likely corresponds to or is at least tightly coupled with Cys56. The identity of the second site of enzyme modification remains to be determined, but it is distinguishable from the first Cys56-dependent site, which is amenable to γ-Glu-Cys acylation by free GSH, because its acylation not only depends on the provision of Cd2+ or GSH with a blocked, S-alkylated thiol group, but is also necessary for net PC synthesis. We conclude that des-Gly-PCs are not generated as an immediate by-product, but rather that the enzyme catalyzes a dipeptidyl transfer reaction in which some of the energy liberated upon cleavage of the Cys–Gly bonds of the γ-Glu-Cys donors in the first phase of the catalytic cycle is conserved through the formation of a two site-substituted γ-Glu-Cys acyl-enzyme intermediate whose hydrolysis provides the energy required for the formation of the new peptide bond required for the extension of PC chain length by one γ-Glu-Cys repeat per catalytic cycle