5 research outputs found

    Digital receivers for low-frequency radio telescopes UTR-2, URAN, GURT

    Full text link
    This paper describes digital radio astronomical receivers used for decameter and meter wavelength observations. This paper describes digital radio astronomical receivers used for decameter and meter wavelength observations. Since 1998, digital receivers performing on-the-fly dynamic spectrum calculations or waveform data recording without data loss have been used at the UTR-2 radio telescope, the URAN VLBI system, and the GURT new generation radio telescope. Here we detail these receivers developed for operation in the strong interference environment that prevails in the decameter wavelength range. Data collected with these receivers allowed us to discover numerous radio astronomical objects and phenomena at low frequencies, a summary of which is also presented.Comment: 24 pages, 15 figure

    Multi-antenna observations in the low-frequency radio astronomy of solar system objects and related topics studies. Planetary Radio Emissions|PLANETARY RADIO EMISSIONS VIII 8|

    No full text
    Rapid progress currently takes place in the field of low-frequency radio astronomy in the meter–decameter–hectometer range of wavelengths. It is caused by a radical modernization of the existing radio telescopes, creation of a new generation of instruments, space-borne observations, and by the development of research on all classes of astrophysical objects, including the Solar System. On the other hand, a range of difficulties specific to low-frequency radio astronomy is known, which are caused by technical, methodological, and physical limitations. An effective strategy for overcoming these difficulties is based on synchronous observations using several radio telescopes separated by distances from a few to several thousand kilometers. This provides an opportunity to reduce and identify radio interference and the influence of the propagation media, to increase the sensitivity and resolution, and to solve many problems with higher efficiency. In recent years such simultaneous observations were carried out for the Sun, Jupiter, Saturn, interplanetary medium, pulsars, exoplanets, and transients using the radio telescopes UTR-2, URAN, GURT, NDA, NenuFAR, LOFAR and other. Parallel observations with the space missions WIND, STEREO, Cassini and Juno also facilitate improvement of the quality and reliability of low-frequency radio astronomical experiments

    Multi-antenna observations in the low-frequency radio astronomy of solar system objects and related topics studies

    No full text
    International audienceRapid progress currently takes place in the field of low-frequency radio astronomy in the meter-decameter-hectometer range of wavelengths. It is caused by a radical modernization of the existing radio telescopes, creation of a new generation of instruments, space-borne observations, and by the development of research on all classes of astrophysical objects, including the Solar System. On the other hand, a range of difficulties specific to low-frequency radio astronomy is known, which are caused by technical, methodological, and physical limitations. An effective strategy for overcoming these difficulties is based on synchronous observations using several radio telescopes separated by distances from a few to several thousand kilometers. This provides an opportunity to reduce and identify radio interference and the influence of the propagation media, to increase the sensitivity and resolution, and to solve many problems with higher efficiency. In recent years such simultaneous observations were carried out for the Sun, Jupiter, Saturn, interplanetary medium, pulsars, exoplanets, and transients using the radio telescopes UTR-2, URAN, GURT, NDA, NenuFAR, LOFAR and other. Parallel observations with the space missions WIND, STEREO, Cassini and Juno also facilitate improvement of the quality and reliability of low-frequency radio astronomical experiments

    The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT

    No full text
    International audienceThe current status of the large decameter radio telescope UTR-2 (Ukrainian T-shaped Radio telescope) together with its VLBI system called URAN is described in detail. By modernization of these instruments through implementation of novel versatile analog and digital devices as well as new observation techniques, the observational capabilities of UTR-2 have been substantially enhanced. The total effective area of UTR-2 and URAN arrays reaches 200 000 m2, with 24 MHz observational bandwidth (within the 8-32 MHz frequency range), spectral and temporal resolutions down to 4 kHz and 0.5 msec in dynamic spectrum mode or virtually unlimited in waveform mode. Depending on the spectral and temporal resolutions and confusion effects, the sensitivity of UTR-2 varies from a few Jy to a few mJy, and the angular resolution ranges from ~ 30 arcminutes (with a single antenna array) to a few arcseconds (in VLBI mode). In the framework of national and international research projects conducted in recent years, many new results on Solar system objects, the Galaxy and Metagalaxy have been obtained. In order to extend the observation frequency range to 8-80 MHz and enlarge the dimensions of the UTR-2 array, a new instrument - GURT (Giant Ukrainian Radio Telescope) - is now under construction. The radio telescope systems described herein can be used in synergy with other existing low-frequency arrays such as LOFAR, LWA, NenuFAR, as well as provide ground-based support for space-based instruments

    The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT

    No full text
    corecore