404 research outputs found

    Thermal insulation performance of steel framed walls

    Get PDF
    Π’ΠΈΠ·Π½Π°Ρ‡ΠΈΡ‚ΠΈ ΠΊΠΎΠ½Ρ„Ρ–Π³ΡƒΡ€Π°Ρ†Ρ–Ρ— мСталокаркасних стін Ρ–Π· ΠΏΡ–Π΄Π²ΠΈΡ‰Π΅Π½ΠΎΡŽ Ρ‚Π΅ΠΏΠ»ΠΎΠ·Π°Ρ…ΠΈΡΠ½ΠΎΡŽ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŽ. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ– ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚ΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Ρ– стін Π·Ρ– сталСвими каркасами Π±ΡƒΠ»ΠΈ Π²ΠΈΠ·Π½Π°Ρ‡Π΅Π½Ρ– Π·Π° допомогою ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½ΠΎΡ— ΠΊΠΎΠΌΠΏβ€™ΡŽΡ‚Π΅Ρ€Π½ΠΎΡ— ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΈ для модСлювання Ρ‚Π΅ΠΏΠ»ΠΎΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Ρ– THERM 7.6. Π‘ΡƒΠ»ΠΎ ΠΎΡ†Ρ–Π½Π΅Π½ΠΎ тСплозахисні характСристики Ρ€Ρ–Π·Π½ΠΎΠΌΠ°Π½Ρ–Ρ‚Π½ΠΈΡ… ΠΊΠΎΠ½Ρ„Ρ–Π³ΡƒΡ€Π°Ρ†Ρ–ΠΉ стін Ρ–Π· ΠΌΠ΅Ρ‚Π°Π»Π΅Π²ΠΈΠΌ каркасом. Π’ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ ΡˆΠ»ΡΡ…ΠΈ підвищСння тСплозахисної СфСктивності мСталокаркасних стін. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π±ΡƒΡ‚ΠΈ використані ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΡƒΠ²Π°Π½Π½Ρ– Π½ΠΎΠ²ΠΈΡ… Π΅Π½Π΅Ρ€Π³ΠΎΠ΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… Π±ΡƒΠ΄Ρ–Π²Π΅Π»ΡŒ Ρ‚Π° споруд.ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΈ мСталлокаркасных стСн с ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½Π½Ρ‹ΠΌΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΡ‚Π΅ΠΏΠ»ΠΎΠ·Π°Ρ‰ΠΈΡ‚Π½Ρ‹ΠΌΠΈ характСристиками. ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚Ρ‹ Ρ‚Π΅ΠΏΠ»ΠΎΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ мСталлокаркасных стСн Π±Ρ‹Π»ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½ΠΎΠΉ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹ для модСлирования Ρ‚Π΅ΠΏΠ»ΠΎΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ THERM 7.6. Π‘Ρ‹Π»ΠΈ ΠΎΡ†Π΅Π½Π΅Π½Ρ‹ Ρ‚Π΅ΠΏΠ»ΠΎΠ·Π°Ρ‰ΠΈΡ‚Π½Ρ‹Π΅ характСристики Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΉ стСн с мСталличСским каркасом. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ для ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ Ρ‚Π΅ΠΏΠ»ΠΎΠ·Π°Ρ‰ΠΈΡ‚Π½ΠΎΠΉ эффСктивности мСталлокаркасных стСн. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π½ΠΎΠ²Ρ‹Ρ… энСргоэффСктивных Π·Π΄Π°Π½ΠΈΠΉ ΠΈ сооруТСний.To determine metal stud wall systems with improved thermal insulation performance. Thermal transmittance of steel framed walls was analyzed using heat-transfer simulation program THERM 7.6. Thermal insulation performance of various configurations of metal stud walls has been evaluated. Approaches to enhance thermal insulation performance of steel framed walls were determined. The work results can be used in designing new energy efficient building

    Novel antibodies against RCD-8 as a tool to study processing bodies

    Get PDF
    Aim. To develop the model system for processing bodies (PBs) state monitoring and accomplish it in the future as a possible read-out of mTOR activity in mammalian cells. Methods. In course of this study we raised polyclonal antibodies against one of the PBs scaffold proteins – RCD-8 and employed cell imaging technique. Results. It has been shown that the obtained antibodies recognize the intracellular structures, namely PBs. The detected protein co-localized with known marker of PBs – DCP1a, and partly with marker of SGs – CPEB. Conclusions. Based on changes of PBs number and size in cells after exposure to known inductors or inhibitors of PB formation we prove the specificity of generated antibodies and possibility of their application for studies on the processing bodies dynamics controlled by mTOR-dependent signalin

    Analytical determination of the time of handling process of polymeric parts in a machine with a complex movement of working container

    Get PDF
    ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π°Π½Π°Π»Ρ–Ρ‚ΠΈΡ‡Π½Π΅ дослідТСння процСсу ΠΎΠ±Ρ€ΠΎΠ±ΠΊΠΈ Π΄Ρ€Ρ–Π±Π½ΠΈΡ… ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Π½ΠΈΡ… Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ Π°Π±Ρ€Π°Π·ΠΈΠ²ΠΎΠΌ Ρƒ вигляді Π²Ρ–Π»ΡŒΠ½ΠΈΡ… Π³Ρ€Π°Π½ΡƒΠ» Π² ΠΌΠ°ΡˆΠΈΠ½Ρ–, Ρ€ΠΎΠ±ΠΎΡ‡Π° ємкості якої Π²ΠΈΠΊΠΎΠ½ΡƒΡ” складний просторовий Ρ€ΡƒΡ…, для визначСння Ρ€Π°Ρ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΈΡ… ΡƒΠΌΠΎΠ² полірування. На основі ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»Ρ–Ρ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ дослідТСння процСсу ΠΎΠ±Ρ€ΠΎΠ±ΠΊΠΈ Π΄Ρ€Ρ–Π±Π½ΠΈΡ… ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Π½ΠΈΡ… Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ Π² ΠΌΠ°ΡˆΠΈΠ½Ρ– Π·Ρ– складним просторовим Ρ€ΡƒΡ…ΠΎΠΌ Ρ€ΠΎΠ±ΠΎΡ‡ΠΎΡ— ємкості ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½Ρ– залСТності, Ρ‰ΠΎ Π΄Π°ΡŽΡ‚ΡŒ ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΡƒΠ²Π°Ρ‚ΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π½Π° стадії проСктування, ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½Ρ– Π²ΠΈΡ€Π°Π·ΠΈ, Ρ‰ΠΎ Π΄ΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ΡŒ Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ²Π°Ρ‚ΠΈ Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½ΠΈΠΉ час виконання Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— ΠΎΠΏΠ΅Ρ€Π°Ρ†Ρ–Ρ— полірування ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Π½ΠΈΡ… Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ. Аналітично встановлСно, Ρ‰ΠΎ Π² Ρ€ΠΎΠ±ΠΎΡ‡Ρ–ΠΉ ємкості, яка ΠΌΠ°Ρ” ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†Ρ–ΠΉΠ½ΠΎ Π±Ρ–Π»ΡŒΡˆΡ– Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½Ρ– ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈ, процСс ΠΎΠ±Ρ€ΠΎΠ±ΠΊΠΈ Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ Π·Π°ΠΉΠΌΠ°Ρ‚ΠΈΠΌΠ΅ мСншС часу. ВстановлСні закономірності Π²ΠΏΠ»ΠΈΠ²Ρƒ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² Ρ€ΠΎΠ±ΠΎΡ‡ΠΎΡ— ємкості, Ρ‰ΠΎ Π²ΠΈΠΊΠΎΠ½ΡƒΡ” складний просторовий Ρ€ΡƒΡ… Ρ‚Π° Ρ€Π΅ΠΆΠΈΠΌΡ–Π² Ρ€ΡƒΡ…Ρƒ сипкого Ρ€ΠΎΠ±ΠΎΡ‡ΠΎΠ³ΠΎ сСрСдовища Π½Π° Ρ–Π½Ρ‚Π΅Π½ΡΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ процСсу полірування Π΄Ρ€Ρ–Π±Π½ΠΈΡ… ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Π½ΠΈΡ… Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ Π°Π±Ρ€Π°Π·ΠΈΠ²ΠΎΠΌ Ρƒ вигляді Π²Ρ–Π»ΡŒΠ½ΠΈΡ… Π³Ρ€Π°Π½ΡƒΠ», встановлСний взаємозв’язок ΠΌΡ–ΠΆ ΡˆΠ»ΡΡ…ΠΎΠΌ тСртя, який ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄Π΅Ρ‚Π°Π»ΡŒ Π² сСрСдині ємкості Ρ‚Π° Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½ΠΈΠΌ Ρ—Ρ— часом ΠΎΠ±Ρ€ΠΎΠ±ΠΊΠΈ. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½Ρ– залСТності для Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΡƒ часу ΠΎΠ±Ρ€ΠΎΠ±ΠΊΠΈ Ρ‚Π° настанови Ρ‰ΠΎΠ΄ΠΎ Ρ€Π΅Π°Π»Ρ–Π·Π°Ρ†Ρ–Ρ— Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΡƒ Ρ€ΡƒΡ…Ρƒ сипкого Ρ€ΠΎΠ±ΠΎΡ‡ΠΎΠ³ΠΎ сСрСдовища, Ρ‰ΠΎ Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΡƒΡŽΡ‚ΡŒ інтСнсивнС полірування Π΄Ρ€Ρ–Π±Π½ΠΈΡ… ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Π½ΠΈΡ… Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ Π²Ρ–Π»ΡŒΠ½ΠΈΠΌ Π°Π±Ρ€Π°Π·ΠΈΠ²ΠΎΠΌ Ρƒ вигляді Π³Ρ€Π°Π½ΡƒΠ» Π² ΠΌΠ°ΡˆΠΈΠ½Ρ– Ρ€ΠΎΠ±ΠΎΡ‡Π° ємкості якої Π²ΠΈΠΊΠΎΠ½ΡƒΡ” складний просторовий Ρ€ΡƒΡ….ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ аналитичСскоС исслСдованиС процСсса ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΌΠ΅Π»ΠΊΠΈΡ… ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ Π°Π±Ρ€Π°Π·ΠΈΠ²ΠΎΠΌ Π² Π²ΠΈΠ΄Π΅ свободных Π³Ρ€Π°Π½ΡƒΠ» Π² машинС, рабочая Π΅ΠΌΠΊΠΎΡΡ‚ΡŒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ выполняСт слоТноС пространствСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, для опрСдСлСния Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… условий полирования. На основС ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ аналитичСского исслСдования процСсса ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΌΠ΅Π»ΠΊΠΈΡ… ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ Π² машинС со слоТным пространствСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ Смкости ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ матСматичСскиС зависимости, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ тСхнологичСский Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π½Π° стадии проСктирования, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ матСматичСскиС выраТСния, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ врСмя выполнСния тСхнологичСской ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ ΠΏΠΎΠ»ΠΈΡ€ΠΎΠ²ΠΊΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ. АналитичСски установлСно, Ρ‡Ρ‚ΠΎ Π² Смкости, которая ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ большиС гСомСтричСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹, процСсс ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π±ΡƒΠ΄Π΅Ρ‚ Π·Π°Π½ΠΈΠΌΠ°Ρ‚ΡŒ мСньшС Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. УстановлСны закономСрности влияния гСомСтричСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ Смкости, Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡŽΡ‰Π΅ΠΉ слоТноС пространствСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² двиТСния сыпучСй Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ срСды Π½Π° ΠΈΠ½Ρ‚Π΅Π½ΡΠΈΠ²Π½ΠΎΡΡ‚ΡŒ процСсса полирования ΠΌΠ΅Π»ΠΊΠΈΡ… ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ Π°Π±Ρ€Π°Π·ΠΈΠ²ΠΎΠΌ Π² Π²ΠΈΠ΄Π΅ свободных Π³Ρ€Π°Π½ΡƒΠ». ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ матСматичСскиС зависимости для расчСта Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈ установки ΠΏΠΎ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΠ° двиТСния сыпучСго Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ срСды, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ интСнсивноС ΠΏΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅Π»ΠΊΠΈΡ… ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ свободным Π°Π±Ρ€Π°Π·ΠΈΠ²ΠΎΠΌ Π² Π²ΠΈΠ΄Π΅ Π³Ρ€Π°Π½ΡƒΠ» Π² машинС, рабочая Π΅ΠΌΠΊΠΎΡΡ‚ΡŒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ выполняСт слоТноС пространствСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.An analytical determination of the main technological parameters of polishing small polymer parts with a free abrasive in the form of granules in containers that perform a complex spatial movement, determination of the time of handling process of polymeric details in a machine with a complex movement of working container. An analytical research was conducted of the processing of small polymeric parts by abrasive in the form of free granules in a machine whose working capacities performs a complex spatial movement to determine rational polishing conditions. On the basis of the conducted analytical research of the processing of small polymer parts in a machine with a complex spatial motion of a working container, mathematical dependencies were obtained that enable to predict the technological result at the design stage. It has been analytically established that in a container with proportional greater geometric parameters processing will take less time. The regularities of the influence of the geometric parameters of the working container, which performs the complex spatial motion and the modes of motion of a friable working medium, are determined on the intensity of the process of polishing small polymer parts by abrasive in the form of free granules. The mathematical dependences are obtained for the calculation of the processing time and instructions for realization of the corresponding mode of movement of a friable working medium, which provide intensive polishing of small polymer parts with a free abrasive in the form of granules, are obtained in a machine whose working capacities performs a complex spatial movement

    The current status of orbital experiments for UHECR studies

    Full text link
    Two types of orbital detectors of extreme energy cosmic rays are being developed nowadays: (i) TUS and KLYPVE with reflecting optical systems (mirrors) and (ii) JEM-EUSO with high-transmittance Fresnel lenses. They will cover much larger areas than existing ground-based arrays and almost uniformly monitor the celestial sphere. The TUS detector is the pioneering mission developed in SINP MSU in cooperation with several Russian and foreign institutions. It has relatively small field of view (+/-4.5 deg), which corresponds to a ground area of 6.4x10^3 sq.km. The telescope consists of a Fresnel-type mirror-concentrator (~2 sq.m) and a photo receiver (a matrix of 16x16 photomultiplier tubes). It is to be deployed on the Lomonosov satellite, and is currently at the final stage of preflight tests. Recently, SINP MSU began the KLYPVE project to be installed on board of the Russian segment of the ISS. The optical system of this detector contains a larger primary mirror (10 sq.m), which allows decreasing the energy threshold. The total effective field of view will be at least +/-14 degrees to exceed the annual exposure of the existing ground-based experiments. Several configurations of the detector are being currently considered. Finally, JEM-EUSO is a wide field of view (+/-30 deg) detector. The optics is composed of two curved double-sided Fresnel lenses with 2.65 m external diameter, a precision diffractive middle lens and a pupil. The ultraviolet photons are focused onto the focal surface, which consists of nearly 5000 multi-anode photomultipliers. It is developed by a large international collaboration. All three orbital detectors have multi-purpose character due to continuous monitoring of various atmospheric phenomena. The present status of development of the TUS and KLYPVE missions is reported, and a brief comparison of the projects with JEM-EUSO is given.Comment: 18 pages; based on the rapporteur talk given by M.I. Panasyuk at ECRS-2014; v2: a few minor language issues fixed thanks to the editor; to be published in the proceeding

    Pathomorphological diagnostics of chronic appendicitis (literature review)

    Get PDF
    The review is devoted to the problem of diagnostics and differential diagnostics of chronic appendicitis. As it is commonly known, the very existence of chronic appendicitis is still considered controversial. The article describes the current ideas on chronic appendicitis (primary, secondary, residual and recurrent), presents the list of morphological manifestations in the vermiform appendix at chronic inflammation, discovered at routine histological examination: dystrophic changes in the form of atrophy of all layers of appendix with sclerosis or hypotrophy of various degree, up to appendiclausis and disappearance of mucous membrane, and lipomatosis of submucosa. The authors discuss the complexity of diagnostics predetermined by lack of precise criteria of the disease; show the possibility of evaluation of the expression of cytoadherence molecules for diagnostics of the disease, in particular of VCAM-1 and ICAM-1 for differential diagnostics of chronic appendicitis. The role of suppressor of signal cytokine proteins SOCS3 in chronic inflammation is discussed. The data demonstrate the increase of T-lymphocytes and neurons in chronic appendicitis as an increase of PGP 9.5 (panneuronal marker protein gene product 9.5) level. It has been shown, that immunohistochemical staining on p44 MAPK has an advantage in differential diagnostics of chronic appendicitis - specific staining of subserous and muscle layer of the wall is observed only at the discussed pathology of the appendix. In spite of multiple studies and acknowledgment of the fact that chronic form of appendicitis is a separate disease, the diagnostics of this pathology still presents quite a problem especially when only routine methods of examination are used. Thus, we found it necessary to introduce additional immunomorphologic methods into the clinical practice

    The Tunka Experiment: Towards a 1-km^2 Cherenkov EAS Array in the Tunka Valley

    Full text link
    The project of an EAS Cherenkov array in the Tunka valley/Siberia with an area of about 1 km^2 is presented. The new array will have a ten times bigger area than the existing Tunka-25 array and will permit a detailed study of the cosmic ray energy spectrum and the mass composition in the energy range from 10^15 to 10^18 eV.Comment: 3 pages, 2 figures, to be published in IJMP
    • …
    corecore