83 research outputs found
Massive stars exploding in a He-rich circumstellar medium. I. Type Ibn (SN 2006jc-like) events
We present new spectroscopic and photometric data of the type Ibn supernovae
2006jc, 2000er and 2002ao. We discuss the general properties of this recently
proposed supernova family, which also includes SN 1999cq. The early-time
monitoring of SN 2000er traces the evolution of this class of objects during
the first few days after the shock breakout. An overall similarity in the
photometric and spectroscopic evolution is found among the members of this
group, which would be unexpected if the energy in these core-collapse events
was dominated by the interaction between supernova ejecta and circumstellar
medium. Type Ibn supernovae appear to be rather normal type Ib/c supernova
explosions which occur within a He-rich circumstellar environment. SNe Ibn are
therefore likely produced by the explosion of Wolf-Rayet progenitors still
embedded in the He-rich material lost by the star in recent mass-loss episodes,
which resemble known luminous blue variable eruptions. The evolved Wolf-Rayet
star could either result from the evolution of a very massive star or be the
more evolved member of a massive binary system. We also suggest that there are
a number of arguments in favour of a type Ibn classification for the historical
SN 1885A (S-Andromedae), previously considered as an anomalous type Ia event
with some resemblance to SN 1991bg.Comment: 17 pages including 12 figures and 4 tables. Slightly revised version,
conclusions unchanged, 1 figure added. Accepted for publication in MNRA
Two New LBV Candidates in the M33 Galaxy
We present two new luminous blue variable (LBV) candidate stars discovered in
the M33 galaxy. We identified these stars (Valeev et al. 2010) as massive star
candidates at the final stages of evolution, presumably with a notable
interstellar extinction. The candidates were selected from the Massey et al.
(2006) catalog based on the following criteria: emission in Halpha, V<18.5 and
0.35<(B-V)<1.2. The spectra of both stars reveal a broad and strong Halpha
emission with extended wings (770 and 1000 km/s). Based on the spectra we
estimated the main parameters of the stars. Object N45901 has a bolometric
luminosity log(L/Lsun)=6.0-6.2 with the value of interstellar extinction
Av=2.3+-0.1. The temperature of the star's photosphere is estimated as
Tstar~13000-15000K its probable mass on the Zero Age Main Sequence is
M~60-80Msun. The infrared excess in N45901 corresponds to the emission of warm
dust with the temperature Twarm~1000K, and amounts to 0.1% of the bolometric
luminosity. A comparison of stellar magnitude estimates from different catalogs
points to the probable variability of the object N45901. Bolometric luminosity
of the second object, N125093, is log(L/Lsun)=6.3-6.6, the value of
interstellar extinction is Av=2.75+-0.15. We estimate its photosphere's
temperature as Tstar~13000-16000K, the initial mass as M~90-120Msun. The
infrared excess in N125093 amounts to 5-6% of the bolometric luminosity. Its
spectral energy distribution reveals two thermal components with the
temperatures Twarm~1000K and Tcold~480K. The [CaII] lines (7291A and 7323A),
observed in LBV-like stars VarA and N93351 in M33, are also present in the
spectrum of N125093. These lines indicate relatively recent gas eruptions and
dust activity linked with them. High bolometric luminosity of these stars and
broad Halpha emissions allow classifying the studied objects as LBV candidates.Comment: 14 pages, 4 figure
New insights into the nature of the SMC WR/LBV binary HD 5980
We present the results of optical wavelength observations of the unusual SMC
eclipsing binary system HD 5980 obtained in 1999 and 2004--2005. Radial
velocity curves for the erupting LBV/WR object (star A) and its close WR-like
companion (star B) are obtained by deblending the variable emission-line
profiles of N IV and N V lines under the simplistic assumption that these lines
originate primarily in the winds of star A and star B. The derived masses
M_A=58--79 Mo and M_B=51--67 Mo, are more consistent with the stars' location
near the top of the HRD than previous estimates. The presence of a wind-wind
interaction region is inferred from the orbital phase-dependent behavior of He
I P Cygni absorption components. The emission-line intensities continued with
the declining trend previously seen in UV spectra. The behavior of the
photospheric absorption lines is consistent with the results of Schweickhardt
(2002) who concludes that the third object in the combined spectrum, star C, is
also a binary system with P(starC)~96.5 days, e=0.83. The data used in this
paper will be made publicly available for further analysis.Comment: 48 pages, 26 figure
The evolution of rotating stars
First, we review the main physical effects to be considered in the building
of evolutionary models of rotating stars on the Upper Main-Sequence (MS). The
internal rotation law evolves as a result of contraction and expansion,
meridional circulation, diffusion processes and mass loss. In turn,
differential rotation and mixing exert a feedback on circulation and diffusion,
so that a consistent treatment is necessary.
We review recent results on the evolution of internal rotation and the
surface rotational velocities for stars on the Upper MS, for red giants,
supergiants and W-R stars. A fast rotation is enhancing the mass loss by
stellar winds and reciprocally high mass loss is removing a lot of angular
momentum. The problem of the ``break-up'' or -limit is critically
examined in connection with the origin of Be and LBV stars. The effects of
rotation on the tracks in the HR diagram, the lifetimes, the isochrones, the
blue to red supergiant ratios, the formation of W-R stars, the chemical
abundances in massive stars as well as in red giants and AGB stars, are
reviewed in relation to recent observations for stars in the Galaxy and
Magellanic Clouds. The effects of rotation on the final stages and on the
chemical yields are examined, as well as the constraints placed by the periods
of pulsars. On the whole, this review points out that stellar evolution is not
only a function of mass M and metallicity Z, but of angular velocity
as well.Comment: 78 pages, 7 figures, review for Annual Review of Astronomy and
Astrophysics, vol. 38 (2000
Micro-connectomics: probing the organization of neuronal networks at the cellular scale.
Defining the organizational principles of neuronal networks at the cellular scale, or micro-connectomics, is a key challenge of modern neuroscience. In this Review, we focus on graph theoretical parameters of micro-connectome topology, often informed by economical principles that conceptually originated with Ramón y Cajal's conservation laws. First, we summarize results from studies in intact small organisms and in samples from larger nervous systems. We then evaluate the evidence for an economical trade-off between biological cost and functional value in the organization of neuronal networks. Various results suggest that many aspects of neuronal network organization are indeed the outcome of competition between these two fundamental selection pressures.This work was supported by the National Institute of Health Research (NIHR) Cambridge Biomedical Research Centre.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by the Nature Publishing Group
- …