83 research outputs found

    Massive stars exploding in a He-rich circumstellar medium. I. Type Ibn (SN 2006jc-like) events

    Full text link
    We present new spectroscopic and photometric data of the type Ibn supernovae 2006jc, 2000er and 2002ao. We discuss the general properties of this recently proposed supernova family, which also includes SN 1999cq. The early-time monitoring of SN 2000er traces the evolution of this class of objects during the first few days after the shock breakout. An overall similarity in the photometric and spectroscopic evolution is found among the members of this group, which would be unexpected if the energy in these core-collapse events was dominated by the interaction between supernova ejecta and circumstellar medium. Type Ibn supernovae appear to be rather normal type Ib/c supernova explosions which occur within a He-rich circumstellar environment. SNe Ibn are therefore likely produced by the explosion of Wolf-Rayet progenitors still embedded in the He-rich material lost by the star in recent mass-loss episodes, which resemble known luminous blue variable eruptions. The evolved Wolf-Rayet star could either result from the evolution of a very massive star or be the more evolved member of a massive binary system. We also suggest that there are a number of arguments in favour of a type Ibn classification for the historical SN 1885A (S-Andromedae), previously considered as an anomalous type Ia event with some resemblance to SN 1991bg.Comment: 17 pages including 12 figures and 4 tables. Slightly revised version, conclusions unchanged, 1 figure added. Accepted for publication in MNRA

    Two New LBV Candidates in the M33 Galaxy

    Full text link
    We present two new luminous blue variable (LBV) candidate stars discovered in the M33 galaxy. We identified these stars (Valeev et al. 2010) as massive star candidates at the final stages of evolution, presumably with a notable interstellar extinction. The candidates were selected from the Massey et al. (2006) catalog based on the following criteria: emission in Halpha, V<18.5 and 0.35<(B-V)<1.2. The spectra of both stars reveal a broad and strong Halpha emission with extended wings (770 and 1000 km/s). Based on the spectra we estimated the main parameters of the stars. Object N45901 has a bolometric luminosity log(L/Lsun)=6.0-6.2 with the value of interstellar extinction Av=2.3+-0.1. The temperature of the star's photosphere is estimated as Tstar~13000-15000K its probable mass on the Zero Age Main Sequence is M~60-80Msun. The infrared excess in N45901 corresponds to the emission of warm dust with the temperature Twarm~1000K, and amounts to 0.1% of the bolometric luminosity. A comparison of stellar magnitude estimates from different catalogs points to the probable variability of the object N45901. Bolometric luminosity of the second object, N125093, is log(L/Lsun)=6.3-6.6, the value of interstellar extinction is Av=2.75+-0.15. We estimate its photosphere's temperature as Tstar~13000-16000K, the initial mass as M~90-120Msun. The infrared excess in N125093 amounts to 5-6% of the bolometric luminosity. Its spectral energy distribution reveals two thermal components with the temperatures Twarm~1000K and Tcold~480K. The [CaII] lines (7291A and 7323A), observed in LBV-like stars VarA and N93351 in M33, are also present in the spectrum of N125093. These lines indicate relatively recent gas eruptions and dust activity linked with them. High bolometric luminosity of these stars and broad Halpha emissions allow classifying the studied objects as LBV candidates.Comment: 14 pages, 4 figure

    New insights into the nature of the SMC WR/LBV binary HD 5980

    Get PDF
    We present the results of optical wavelength observations of the unusual SMC eclipsing binary system HD 5980 obtained in 1999 and 2004--2005. Radial velocity curves for the erupting LBV/WR object (star A) and its close WR-like companion (star B) are obtained by deblending the variable emission-line profiles of N IV and N V lines under the simplistic assumption that these lines originate primarily in the winds of star A and star B. The derived masses M_A=58--79 Mo and M_B=51--67 Mo, are more consistent with the stars' location near the top of the HRD than previous estimates. The presence of a wind-wind interaction region is inferred from the orbital phase-dependent behavior of He I P Cygni absorption components. The emission-line intensities continued with the declining trend previously seen in UV spectra. The behavior of the photospheric absorption lines is consistent with the results of Schweickhardt (2002) who concludes that the third object in the combined spectrum, star C, is also a binary system with P(starC)~96.5 days, e=0.83. The data used in this paper will be made publicly available for further analysis.Comment: 48 pages, 26 figure

    The evolution of rotating stars

    Full text link
    First, we review the main physical effects to be considered in the building of evolutionary models of rotating stars on the Upper Main-Sequence (MS). The internal rotation law evolves as a result of contraction and expansion, meridional circulation, diffusion processes and mass loss. In turn, differential rotation and mixing exert a feedback on circulation and diffusion, so that a consistent treatment is necessary. We review recent results on the evolution of internal rotation and the surface rotational velocities for stars on the Upper MS, for red giants, supergiants and W-R stars. A fast rotation is enhancing the mass loss by stellar winds and reciprocally high mass loss is removing a lot of angular momentum. The problem of the ``break-up'' or Ω\Omega-limit is critically examined in connection with the origin of Be and LBV stars. The effects of rotation on the tracks in the HR diagram, the lifetimes, the isochrones, the blue to red supergiant ratios, the formation of W-R stars, the chemical abundances in massive stars as well as in red giants and AGB stars, are reviewed in relation to recent observations for stars in the Galaxy and Magellanic Clouds. The effects of rotation on the final stages and on the chemical yields are examined, as well as the constraints placed by the periods of pulsars. On the whole, this review points out that stellar evolution is not only a function of mass M and metallicity Z, but of angular velocity Ω\Omega as well.Comment: 78 pages, 7 figures, review for Annual Review of Astronomy and Astrophysics, vol. 38 (2000

    Micro-connectomics: probing the organization of neuronal networks at the cellular scale.

    Get PDF
    Defining the organizational principles of neuronal networks at the cellular scale, or micro-connectomics, is a key challenge of modern neuroscience. In this Review, we focus on graph theoretical parameters of micro-connectome topology, often informed by economical principles that conceptually originated with Ramón y Cajal's conservation laws. First, we summarize results from studies in intact small organisms and in samples from larger nervous systems. We then evaluate the evidence for an economical trade-off between biological cost and functional value in the organization of neuronal networks. Various results suggest that many aspects of neuronal network organization are indeed the outcome of competition between these two fundamental selection pressures.This work was supported by the National Institute of Health Research (NIHR) Cambridge Biomedical Research Centre.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by the Nature Publishing Group

    Is the W-R system HD 5980 in the SMC undergoing outburst?

    No full text
    • …
    corecore