332 research outputs found

    Reduction of species identification errors in surveys of marine wildlife abundance utilising unoccupied aerial vehicles (UAVs)

    Get PDF
    The advent of unoccupied aerial vehicles (UAVs) has enhanced our capacity to survey wildlife abundance, yet new protocols are still required for collecting, processing, and analysing image-type observations. This paper presents a methodological approach to produce informative priors on species misidentification probabilities based on independent experiments. We performed focal follows of known dolphin species and distributed our imagery amongst 13 trained observers. Then, we investigated the effects of reviewer-related variables and image attributes on the accuracy of species identification and level of certainty in observations. In addition, we assessed the number of reviewers required to produce reliable identification using an agreement-based framework compared with the majority rule approach. Among-reviewer variation was an important predictor of identification accuracy, regardless of previous experience. Image resolution and sea state exhibited the most pronounced effects on the proportion of correct identifications and the reviewers’ mean level of confidence. Agreement-based identification resulted in substantial data losses but retained a broader range of image resolutions and sea states than the majority rule approach and produced considerably higher accuracy. Our findings suggest a strong dependency on reviewer-related variables and image attributes, which, unless considered, may compromise identification accuracy and produce unreliable estimators of abundance

    Information flow during gene activation by signaling molecules: ethylene transduction in Arabidopsis cells as a study system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We study root cells from the model plant <it>Arabidopsis thaliana </it>and the communication channel conformed by the ethylene signal transduction pathway. A basic equation taken from our previous work relates the probability of expression of the gene <it>ERF</it>1 to the concentration of ethylene.</p> <p>Results</p> <p>The above equation is used to compute the Shannon entropy (<it>H</it>) or degree of uncertainty that the genetic machinery has during the decoding of the message encoded by the ethylene specific receptors embedded in the endoplasmic reticulum membrane and transmitted into the nucleus by the ethylene signaling pathway. We show that the amount of information associated with the expression of the master gene <it>ERF</it>1 (Ethylene Response Factor 1) can be computed. Then we examine the system response to sinusoidal input signals with varying frequencies to determine if the cell can distinguish between different regimes of information flow from the environment. Our results demonstrate that the amount of information managed by the root cell can be correlated with the frequency of the input signal.</p> <p>Conclusion</p> <p>The ethylene signaling pathway cuts off very low and very high frequencies, allowing a window of frequency response in which the nucleus reads the incoming message as a sinusoidal input. Out of this window the nucleus reads the input message as an approximately non-varying one. From this frequency response analysis we estimate: a) the gain of the system during the synthesis of the protein ERF1 (~-5.6 dB); b) the rate of information transfer (0.003 bits) during the transport of each new ERF1 molecule into the nucleus and c) the time of synthesis of each new ERF1 molecule (~21.3 s). Finally, we demonstrate that in the case of the system of a single master gene (<it>ERF</it>1) and a single slave gene (<it>HLS</it>1), the total Shannon entropy is completely determined by the uncertainty associated with the expression of the master gene. A second proposition shows that the Shannon entropy associated with the expression of the <it>HLS</it>1 gene determines the information content of the system that is related to the interaction of the antagonistic genes <it>ARF</it>1, 2 and <it>HLS</it>1.</p

    Effect of blood type on anti-a-Gal immunity and the incidence of infectious diseases

    Get PDF
    The identification of factors affecting the susceptibility to infectious diseases is essential toward reducing their burden on the human population. The ABO blood type correlates with susceptibility to malaria and other infectious diseases. Due to the structural similarity between blood antigen B and Gala1-3GalB1-(3)4GlcNAc-R (a-Gal), we hypothesized that self-tolerance to antigen B affects the immune response to a-Gal, which in turn affects the susceptibility to infectious diseases caused by pathogens carrying a-Gal on their surface. Here we found that the incidence of malaria and tuberculosis, caused by pathogens with a-Gal on their surface, positively correlates with the frequency of blood type B in endemic regions. However, the incidence of dengue fever, caused by a pathogen without a-Gal, was not related to the frequency of blood type B in these populations. Furthermore, the incidence of malaria and tuberculosis was negatively correlated with the anti-a-Gal antibody protective response. These results have implications for disease control and prevention.Peer reviewedVeterinary Pathobiolog

    Comparison of printed glycan array, suspension array and ELISA in the detection of human anti-glycan antibodies

    Get PDF
    Anti-glycan antibodies represent a vast and yet insufficiently investigated subpopulation of naturally occurring and adaptive antibodies in humans. Recently, a variety of glycan-based microarrays emerged, allowing high-throughput profiling of a large repertoire of antibodies. As there are no direct approaches for comparison and evaluation of multi-glycan assays we compared three glycan-based immunoassays, namely printed glycan array (PGA), fluorescent microsphere-based suspension array (SA) and ELISA for their efficacy and selectivity in profiling anti-glycan antibodies in a cohort of 48 patients with and without ovarian cancer. The ABO blood group glycan antigens were selected as well recognized ligands for sensitivity and specificity assessments. As another ligand we selected P1, a member of the P blood group system recently identified by PGA as a potential ovarian cancer biomarker. All three glyco-immunoassays reflected the known ABO blood groups with high performance. In contrast, anti-P1 antibody binding profiles displayed much lower concordance. Whilst anti-P1 antibody levels between benign controls and ovarian cancer patients were significantly discriminated using PGA (p = 0.004), we got only similar results using SA (p = 0.03) but not for ELISA. Our findings demonstrate that whilst assays were largely positively correlated, each presents unique characteristic features and should be validated by an independent patient cohort rather than another array technique. The variety between methods presumably reflects the differences in glycan presentation and the antigen/antibody ratio, assay conditions and detection technique. This indicates that the glycan-antibody interaction of interest has to guide the assay selection

    Plasma and Liver Lipidomics Response to an Intervention of Rimonabant in ApoE*3Leiden.CETP Transgenic Mice

    Get PDF
    Background: Lipids are known to play crucial roles in the development of life-style related risk factors such as obesity, dyslipoproteinemia, hypertension and diabetes. The first selective cannabinoid-1 receptor blocker rimonabant, an anorectic anti-obesity drug, was frequently used in conjunction with diet and exercise for patients with a body mass index greater than 30 kg/m2 with associated risk factors such as type II diabetes and dyslipidaemia in the past. Less is known about the impact of this drug on the regulation of lipid metabolism in plasma and liver in the early stage of obesity. Methodology/Principal Findings: We designed a four-week parallel controlled intervention on apolipoprotein E3 Leiden cholesteryl ester transfer protein (ApoE&z.ast;3Leiden.CETP) transgenic mice with mild overweight and hypercholesterolemia. A liquid chromatography-linear ion trap-Fourier transform ion cyclotron resonance-mass spectrometric approach was employed to investigate plasma and liver lipid responses to the rimonabant intervention. Rimonabant was found to induce a significant body weight loss (9.4%, p<0.05) and a significant plasma total cholesterol reduction (24%, p<0.05). Six plasma and three liver lipids in ApoE&z.ast;3Leiden.CETP transgenic mice were detected to most significantly respond to rimonabant treatment. Distinct lipid patterns between the mice were observed for both plasma and liver samples in rimonabant treatment vs. non-treated controls. This study successfully applied, for the first time, systems biology based lipidomics approaches to evaluate treatment effects of rimonabant in the early stage of obesity. Conclusion: The effects of rimonabant on lipid metabolism and body weight reduction in the early stage obesity were shown to be moderate in ApoE&z.ast;3Leiden.CETP mice on high-fat diet. © 2011 Hu et al
    • …
    corecore