133 research outputs found
Observation of an optical non-Fermi-liquid behavior in the heavy fermion state of YbRhSi
We report far-infrared optical properties of YbRhSi for photon
energies down to 2 meV and temperatures 0.4 -- 300 K. In the coherent heavy
quasiparticle state, a linear dependence of the low-energy scattering rate on
both temperature and photon energy was found. We relate this distinct dynamical
behavior different from that of Fermi liquid materials to the non-Fermi liquid
nature of YbRhSi which is due to its close vicinity to an
antiferromagnetic quantum critical point.Comment: 5 pages, 4 figures. submitte
Electron paramagnetic resonance of Yb3+ ions in a concentrated YbRh2Si2 compound with heavy fermions
The EPR signal from localized ytterbium ions was observed in an undoped YbRh2Si2 compound with heavy fermions in the temperature range from 1.5 to 25 K. The exponential contribution dominating the temperature dependence of EPR line width at temperatures above 15 K was shown to be caused by the random transitions from the ground to the first excited Stark sublevel of the Yb3+(4f13) ion with the activation energy Δ = 115 K. © 2003 MAIK "Nauka/Interperiodica"
Energy scales of Lu(1-x)Yb(x)Rh2Si2 by means of thermopower investigations
We present the thermopower S(T) and the resistivity rho(T) of
Lu(1-x)Yb(x)Rh2Si2 in the temperature range 3 K < T < 300 K. S(T) is found to
change from two minima for dilute systems (x < 0.5) to a single large minimum
in pure YbRh2Si2. A similar behavior has also been found for the magnetic
contribution to the resistivity rho_mag(T). The appearance of the low-T extrema
in S(T) and rho_mag(T) is attributed to the lowering of the Kondo scale with
decreasing x. The evolution of the characteristic energy scales for both the
Kondo effect and the crystal electric field splitting are deduced. An
extrapolation allows to estimate the Kondo temperature of YbRh2Si2 to 29 K.Comment: 15 pages, 4 figures, accepted in Phys. Rev.
Thermal evolution of cobalt deposits on Co3O4(111): atomically dispersed cobalt, two-dimensional CoO islands, and metallic Co nanoparticles
Cobalt oxide nanomaterials show high activity in several catalytic reactions thereby offering the potential to replace noble metals in some applications. We have developed a well-defined model system for partially reduced cobalt oxide materials aiming at a molecular level understanding of cobalt-oxide-based catalysis. Starting from a well-ordered Co3O4(111) film on Ir(100), we modified the surface by deposition of metallic cobalt. Growth, structure, and adsorption properties of the cobalt-modified surface were investigated by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and infrared reflection absorption spectroscopy (IRAS) using CO as a probe molecule. The deposition of a submonolayer of cobalt at 300 K leads to the formation of atomically dispersed cobalt ions distorting the surface layer of the Co3O4 film. Upon annealing to 500 K the Co ions are incorporated into the surface layer forming ordered two-dimensional CoO islands on the Co3O4 grains. At 700 K, Co ions diffuse from the CoO islands into the bulk and the ordered Co3O4(111) surface is restored. Deposition of larger amounts of Co at 300 K leads to formation of metallic Co aggregates on the dispersed cobalt phase. The metallic particles sinter at 500 K and diffuse into the bulk at 700 K. Depending on the degree of bulk reduction, extended Co3O4 grains switch to the CoO(111) structure. All above structures show characteristic CO adsorption behavior and can therefore be identified by IR spectroscopy of adsorbed CO
Separation of energy scales in undoped YbRhSi under hydrostatic pressure
The temperature ()-magnetic field () phase diagram of YbRhSi in
the vicinity of its quantum critical point is investigated by low-
magnetization measurements. Our analysis reveals that the energy scale
, previously related to the Kondo breakdown and terminating at 0.06
T for , remains unchanged under pressure, whereas the antiferromagnetic
critical field increases from 0.06 T () to 0.29 T ( GPa),
resulting in a crossing of and . Our results are very
similar to those on Yb(RhCo)Si, proving that the Co-induced
disorder can not be the reason for the detachment of both scales under chemical
pressure
Measurement of Angular Distributions and R= sigma_L/sigma_T in Diffractive Electroproduction of rho^0 Mesons
Production and decay angular distributions were extracted from measurements
of exclusive electroproduction of the rho^0(770) meson over a range in the
virtual photon negative four-momentum squared 0.5< Q^2 <4 GeV^2 and the
photon-nucleon invariant mass range 3.8< W <6.5 GeV. The experiment was
performed with the HERMES spectrometer, using a longitudinally polarized
positron beam and a ^3He gas target internal to the HERA e^{+-} storage ring.
The event sample combines rho^0 mesons produced incoherently off individual
nucleons and coherently off the nucleus as a whole. The distributions in one
production angle and two angles describing the rho^0 -> pi+ pi- decay yielded
measurements of eight elements of the spin-density matrix, including one that
had not been measured before. The results are consistent with the dominance of
helicity-conserving amplitudes and natural parity exchange. The improved
precision achieved at 47 GeV,
reveals evidence for an energy dependence in the ratio R of the longitudinal to
transverse cross sections at constant Q^2.Comment: 15 pages, 15 embedded figures, LaTeX for SVJour(epj) document class
Revision: Fig. 15 corrected, recent data added to Figs. 10,12,14,15; minor
changes to tex
Fermi-liquid instabilities at magnetic quantum phase transitions
This review discusses instabilities of the Fermi-liquid state of conduction
electrons in metals with particular emphasis on magnetic quantum critical
points. Both the existing theoretical concepts and experimental data on
selected materials are presented; with the aim of assessing the validity of
presently available theory. After briefly recalling the fundamentals of
Fermi-liquid theory, the local Fermi-liquid state in quantum impurity models
and their lattice versions is described. Next, the scaling concepts applicable
to quantum phase transitions are presented. The Hertz-Millis-Moriya theory of
quantum phase transitions is described in detail. The breakdown of the latter
is analyzed in several examples. In the final part experimental data on
heavy-fermion materials and transition-metal alloys are reviewed and confronted
with existing theory.Comment: 62 pages, 29 figs, review article for Rev. Mod. Phys; (v2) discussion
extended, refs added; (v3) shortened; final version as publishe
Measurement of the Proton Spin Structure Function g1p with a Pure Hydrogen Target
A measurement of the proton spin structure function g1p(x,Q^2) in
deep-inelastic scattering is presented. The data were taken with the 27.6 GeV
longitudinally polarised positron beam at HERA incident on a longitudinally
polarised pure hydrogen gas target internal to the storage ring. The kinematic
range is 0.021<x<0.85 and 0.8 GeV^2<Q^2<20 GeV^2. The integral
Int_{0.021}^{0.85} g1p(x)dx evaluated at Q0^2 of 2.5 GeV^2 is
0.122+/-0.003(stat.)+/-0.010(syst.).Comment: 7 pages, 3 figures, 1 table, RevTeX late
Beam-Induced Nuclear Depolarisation in a Gaseous Polarised Hydrogen Target
Spin-polarised atomic hydrogen is used as a gaseous polarised proton target
in high energy and nuclear physics experiments operating with internal beams in
storage rings. When such beams are intense and bunched, this type of target can
be depolarised by a resonant interaction with the transient magnetic field
generated by the beam bunches. This effect has been studied with the HERA
positron beam in the HERMES experiment at DESY. Resonances have been observed
and a simple analytic model has been used to explain their shape and position.
Operating conditions for the experiment have been found where there is no
significant target depolarisation due to this effect.Comment: REVTEX, 6 pages, 5 figure
- …