5,429 research outputs found

    Scaling Study and Thermodynamic Properties of the cubic Helimagnet FeGe

    Get PDF
    The critical behavior of the cubic helimagnet FeGe was obtained from isothermal magnetization data in very close vicinity of the ordering temperature. A thorough and consistent scaling analysis of these data revealed the critical exponents β=0.368\beta=0.368, γ=1.382\gamma=1.382, and δ=4.787\delta=4.787. The anomaly in the specific heat associated with the magnetic ordering can be well described by the critical exponent α=0.133\alpha=-0.133. The values of these exponents corroborate that the magnetic phase transition in FeGe belongs to the isotropic 3D-Heisenberg universality class. The specific heat data are well described by ab initio phonon calculations and confirm the localized character of the magnetic moments.Comment: 10 pages, 8 figure

    The thermal QCD transition with two flavours of twisted mass fermions

    Full text link
    We investigate the thermal QCD transition with two flavors of maximally twisted mass fermions for a set of pion masses, 300 MeV \textless mπm_\pi \textless 500 MeV, and lattice spacings aa \textless 0.09 fm. We determine the pseudo-critical temperatures and discuss their extrapolation to the chiral limit using scaling forms for different universality classes, as well as the scaling form for the magnetic equation of state. For all pion masses considered we find resonable consistency with O(4) scaling plus leading corrections. However, a true distinction between the O(4) scenario and a first order scenario in the chiral limit requires lighter pions than are currently in use in simulations of Wilson fermions.Comment: 11 pages, 11 figure

    Macroscopic dynamics of a trapped Bose-Einstein condensate in the presence of 1D and 2D optical lattices

    Full text link
    The hydrodynamic equations of superfluids for a weakly interacting Bose gas are generalized to include the effects of periodic optical potentials produced by stationary laser beams. The new equations are characterized by a renormalized interaction coupling constant and by an effective mass accounting for the inertia of the system along the laser direction. For large laser intensities the effective mass is directly related to the tunneling rate between two consecutive wells. The predictions for the frequencies of the collective modes of a condensate confined by a magnetic harmonic trap are discussed for both 1D and 2D optical lattices and compared with recent experimental data.Comment: 4 pages, 2 postscript figure

    A parametric level-set method for partially discrete tomography

    Get PDF
    This paper introduces a parametric level-set method for tomographic reconstruction of partially discrete images. Such images consist of a continuously varying background and an anomaly with a constant (known) grey-value. We represent the geometry of the anomaly using a level-set function, which we represent using radial basis functions. We pose the reconstruction problem as a bi-level optimization problem in terms of the background and coefficients for the level-set function. To constrain the background reconstruction we impose smoothness through Tikhonov regularization. The bi-level optimization problem is solved in an alternating fashion; in each iteration we first reconstruct the background and consequently update the level-set function. We test our method on numerical phantoms and show that we can successfully reconstruct the geometry of the anomaly, even from limited data. On these phantoms, our method outperforms Total Variation reconstruction, DART and P-DART.Comment: Paper submitted to 20th International Conference on Discrete Geometry for Computer Imager

    Nonparametric instrumental regression with non-convex constraints

    Full text link
    This paper considers the nonparametric regression model with an additive error that is dependent on the explanatory variables. As is common in empirical studies in epidemiology and economics, it also supposes that valid instrumental variables are observed. A classical example in microeconomics considers the consumer demand function as a function of the price of goods and the income, both variables often considered as endogenous. In this framework, the economic theory also imposes shape restrictions on the demand function, like integrability conditions. Motivated by this illustration in microeconomics, we study an estimator of a nonparametric constrained regression function using instrumental variables by means of Tikhonov regularization. We derive rates of convergence for the regularized model both in a deterministic and stochastic setting under the assumption that the true regression function satisfies a projected source condition including, because of the non-convexity of the imposed constraints, an additional smallness condition

    Convergence rates in expectation for Tikhonov-type regularization of Inverse Problems with Poisson data

    Full text link
    In this paper we study a Tikhonov-type method for ill-posed nonlinear operator equations \gdag = F( ag) where \gdag is an integrable, non-negative function. We assume that data are drawn from a Poisson process with density t\gdag where t>0t>0 may be interpreted as an exposure time. Such problems occur in many photonic imaging applications including positron emission tomography, confocal fluorescence microscopy, astronomic observations, and phase retrieval problems in optics. Our approach uses a Kullback-Leibler-type data fidelity functional and allows for general convex penalty terms. We prove convergence rates of the expectation of the reconstruction error under a variational source condition as tt\to\infty both for an a priori and for a Lepski{\u\i}-type parameter choice rule

    Loop structure of the lowest Bloch band for a Bose-Einstein condensate

    Full text link
    We investigate analytically and numerically Bloch waves for a Bose--Einstein condensate in a sinusoidal external potential. At low densities the dependence of the energy on the quasimomentum is similar to that for a single particle, but at densities greater than a critical one the lowest band becomes triple-valued near the boundary of the first Brillouin zone and develops the structure characteristic of the swallow-tail catastrophe. We comment on the experimental consequences of this behavior.Comment: 4 pages, 7 figure

    Production of a Fermi gas of atoms in an optical lattice

    Full text link
    We prepare a degenerate Fermi gas of potassium atoms by sympathetic cooling with rubidium atoms in a one-dimensional optical lattice. In a tight lattice we observe a change of the density of states of the system, which is a signature of quasi two dimensional confinement. We also find that the dipolar oscillations of the Fermi gas along the tight lattice are almost completely suppressed.Comment: 4 pages, 4 figures, revised versio

    Photoionization of ultracold and Bose-Einstein condensed Rb atoms

    Full text link
    Photoionization of a cold atomic sample offers intriguing possibilities to observe collective effects at extremely low temperatures. Irradiation of a rubidium condensate and of cold rubidium atoms within a magneto-optical trap with laser pulses ionizing through 1-photon and 2-photon absorption processes has been performed. Losses and modifications in the density profile of the remaining trapped cold cloud or the remaining condensate sample have been examined as function of the ionizing laser parameters. Ionization cross-sections were measured for atoms in a MOT, while in magnetic traps losses larger than those expected for ionization process were measured.Comment: 9 pages, 7 figure

    Conidiobolus pachyzygosporus invasive pulmonary infection in a patient with acute myeloid leukemia: case report and review of the literature.

    Get PDF
    Conidiobolus spp. (mainly C. coronatus) are the causal agents of rhino-facial conidiobolomycosis, a limited soft tissue infection, which is essentially observed in immunocompetent individuals from tropical areas. Rare cases of invasive conidiobolomycosis due to C. coronatus or other species (C.incongruus, C.lamprauges) have been reported in immunocompromised patients. We report here the first case of invasive pulmonary fungal infection due to Conidiobolus pachyzygosporus in a Swiss patient with onco-haematologic malignancy. A 71 year-old female was admitted in a Swiss hospital for induction chemotherapy of acute myeloid leukemia. A chest CT performed during the neutropenic phase identified three well-circumscribed lung lesions consistent with invasive fungal infection, along with a positive 1,3-beta-d-glucan assay in serum. A transbronchial biopsy of the lung lesions revealed large occasionally septate hyphae. A Conidiobolus spp. was detected by direct 18S rDNA in the tissue biopsy and subsequently identified at species level as C. pachyzygosporus by 28S rDNA sequencing. The infection was cured after isavuconazole therapy, recovery of the immune system and surgical resection of lung lesions. This is the first description of C. pachyzygosporus as human pathogen and second case report of invasive conidiobolomycosis from a European country
    corecore