530 research outputs found
Spin-orbit coupling and electron spin resonance for interacting electrons in carbon nanotubes
We review the theoretical description of spin-orbit scattering and electron
spin resonance in carbon nanotubes. Particular emphasis is laid on the effects
of electron-electron interactions. The spin-orbit coupling is derived, and the
resulting ESR spectrum is analyzed both using the effective low-energy field
theory and numerical studies of finite-size Hubbard chains and two-leg Hubbard
ladders. For single-wall tubes, the field theoretical description predicts a
double peak spectrum linked to the existence of spin-charge separation. The
numerical analysis basically confirms this picture, but also predicts
additional features in finite-size samples.Comment: 19 pages, 4 figures, invited review article for special issue in J.
Phys. Cond. Mat., published versio
Density-matrix renormalisation group approach to quantum impurity problems
A dynamic density-matrix renormalisation group approach to the spectral
properties of quantum impurity problems is presented. The method is
demonstrated on the spectral density of the flat-band symmetric single-impurity
Anderson model. We show that this approach provides the impurity spectral
density for all frequencies and coupling strengths. In particular, Hubbard
satellites at high energy can be obtained with a good resolution. The main
difficulties are the necessary discretisation of the host band hybridised with
the impurity and the resolution of sharp spectral features such as the
Abrikosov-Suhl resonance.Comment: 16 pages, 6 figures, submitted to Journal of Physics: Condensed
Matte
Non-Abelian Bosonization and Haldane's Conjecture
We study the long wavelength limit of a spin S Heisenberg antiferromagnetic
chain. The fermionic Lagrangian obtained corresponds to a perturbed level 2S
SU(2) Wess-Zumino-Witten model. This effective theory is then mapped into a
compact U(1) boson interacting with Z_{2S} parafermions. The analysis of this
effective theory allows us to show that when S is an integer there is a mass
gap to all excitations, whereas this gap vanishes in the half-odd-integer spin
case. This gives a field theory treatment of the so-called Haldane's conjecture
for arbitrary values of the spin S.Comment: 9 pages REVTeX, no figure
Electron Spin Resonance of defects in the Haldane System Y(2)BaNiO(5)
We calculate the electron paramagnetic resonance (EPR) spectra of the
antiferromagnetic spin-1 chain compound Y(2)BaNi(1-x)Mg(x)O(5) for different
values of x and temperature T much lower than the Haldane gap (~100K). The
low-energy spectrum of an anisotropic Heisenberg Hamiltonian, with all
parameters determined from experiment, has been solved using DMRG. The observed
EPR spectra are quantitatively reproduced by this model. The presence of
end-chain S=1/2 states is clearly observed as the main peak in the spectrum and
the remaining structure is completely understood.Comment: 5 pages, 4 figures include
Spin-orbit coupling and ESR theory for carbon nanotubes
A theoretical description of ESR in 1D interacting metals is given, with
primary emphasis on carbon nanotubes. The spin-orbit coupling is derived, and
the resulting ESR spectrum is analyzed by field theory and exact
diagonalization. Drastic differences in the ESR spectra of single-wall and
multi-wall nanotubes are found. For single-wall tubes, the predicted double
peak spectrum could reveal spin-charge separation.Comment: 4 pages, 1 figure, final version to appear in PR
Low-Lying Excited States and Low-Temperature Properties of an Alternating Spin-1 / Spin-1/2 Chain : A DMRG study
We report spin wave and DMRG studies of the ground and low-lying excited
states of uniform and dimerized alternating spin chains. The DMRG procedure is
also employed to obtain low-temperature thermodynamic properties of the system.
The ground state of a 2N spin system with spin-1 and spin-1/2 alternating from
site to site and interacting via an antiferromagnetic exchange is found to be
ferrimagnetic with total spin from both DMRG and spin wave analysis.
Both the studies also show that there is a gapless excitation to a state with
spin and a gapped excitation to a state with spin .
Surprisingly, the correlation length in the ground state is found to be very
small from both the studies for this gapless system. For this very reason, we
show that the ground state can be described by a variational ``ansatz'' of the
product type. DMRG analysis shows that the chain is susceptible to a
conditional spin-Peierls' instability. The DMRG studies of magnetization,
magnetic susceptibility () and specific heat show strong magnetic-field
dependence. The product shows a minimum as a function of
temperature() at low-magnetic fields and the minimum vanishes at
high-magnetic fields. This low-field behaviour is in agreement with earlier
experimental observations. The specific heat shows a maximum as a function of
temperature and the height of the maximum increases sharply at high magnetic
fields. It is hoped that these studies will motivate experimental studies at
high-magnetic fields.Comment: 22 pages in latex; 16 eps figures available upon reques
Spin dynamics of molecular nanomagnets fully unraveled by four-dimensional inelastic neutron scattering
Molecular nanomagnets are among the first examples of spin systems of finite
size and have been test-beds for addressing a range of elusive but important
phenomena in quantum dynamics. In fact, for short-enough timescales the spin
wavefunctions evolve coherently according to the an appropriate cluster
spin-Hamiltonian, whose structure can be tailored at the synthetic level to
meet specific requirements. Unfortunately, to this point it has been impossible
to determine the spin dynamics directly. If the molecule is sufficiently
simple, the spin motion can be indirectly assessed by an approximate model
Hamiltonian fitted to experimental measurements of various types. Here we show
that recently-developed instrumentation yields the four-dimensional
inelastic-neutron scattering function S(Q,E) in vast portions of reciprocal
space and enables the spin dynamics to be determined with no need of any model
Hamiltonian. We exploit the Cr8 antiferromagnetic ring as a benchmark to
demonstrate the potential of this new approach. For the first time we extract a
model-free picture of the quantum dynamics of a molecular nanomagnet. This
allows us, for example, to examine how a quantum fluctuation propagates along
the ring and to directly test the degree of validity of the
N\'{e}el-vector-tunneling description of the spin dynamics
Finite-Size Scaling of the Ground State Parameters of the Two-Dimensional Heisenberg Model
The ground state parameters of the two-dimensional S=1/2 antiferromagnetic
Heisenberg model are calculated using the Stochastic Series Expansion quantum
Monte Carlo method for L*L lattices with L up to 16. The finite-size results
for the energy E, the sublattice magnetization M, the long-wavelength
susceptibility chi_perp(q=2*pi/L), and the spin stiffness rho_s, are
extrapolated to the thermodynamic limit using fits to polynomials in 1/L,
constrained by scaling forms previously obtained from renormalization group
calculations for the nonlinear sigma model and chiral perturbation theory. The
results are fully consistent with the predicted leading finite-size corrections
and are of sufficient accuracy for extracting also subleading terms. The
subleading energy correction (proportional to 1/L^4) agrees with chiral
perturbation theory to within a statistical error of a few percent, thus
providing the first numerical confirmation of the finite-size scaling forms to
this order. The extrapolated ground state energy per spin, E=-0.669437(5), is
the most accurate estimate reported to date. The most accurate Green's function
Monte Carlo (GFMC) result is slightly higher than this value, most likely due
to a small systematic error originating from ``population control'' bias in
GFMC. The other extrapolated parameters are M=0.3070(3), rho_s = 0.175(2),
chi_perp = 0.0625(9), and the spinwave velocity c=1.673(7). The statistical
errors are comparable with those of the best previous estimates, obtained by
fitting loop algorithm quantum Monte Carlo data to finite-temperature scaling
forms. Both M and rho_s obtained from the finite-T data are, however, a few
error bars higher than the present estimates. It is argued that the T=0
extrapolations performed here are less sensitive to effects of neglectedComment: 16 pages, RevTex, 9 PostScript figure
Hole motion in an arbitrary spin background: Beyond the minimal spin-polaron approximation
The motion of a single hole in an arbitrary magnetic background is
investigated for the 2D t-J model. The wavefunction of the hole is described
within a generalized string picture which leads to a modified concept of spin
polarons. We calculate the one-hole spectral function using a large string
basis for the limits of a Neel ordered and a completely disordered background.
In addition we use a simple approximation to interpolate between these cases.
For the antiferromagnetic background we reproduce the well-known quasiparticle
band. In the disordered case the shape of the spectral function is found to be
strongly momentum-dependent, the quasiparticle weight vanishes for all hole
momenta. Finally, we discuss the relevance of results for the lowest energy
eigenvalue and its dispersion obtained from calculations using a polaron of
minimal size as found in the literature.Comment: 13 pages, 8 figures, to appear in Phys. Rev.
Low-energy properties and magnetization plateaus in a 2-leg mixed spin ladder
Using the density matrix renormalization group technique we investigate the
low-energy properties and the magnetization plateau behavior in a 2-leg mixed
spin ladder consisting of a spin-1/2 chain coupled with a spin-1 chain. The
calculated results show that the system is in the same universality class as
the spin-3/2 chain when the interchain coupling is strongly ferromagnetic, but
the similarity between the two systems is less clear under other coupling
conditions. We have identified two types of magnetization plateau phases. The
calculation of the magnetization distribution on the spin-1/2 and the spin-1
chains on the ladder shows that one plateau phase is related to the partially
magnetized valence-bond-solid state, and the other plateau state contains
strongly coupled S=1 and s=1/2 spins on the rung.Comment: 6 pages with 8 eps figure
- …