1,845 research outputs found
Scattered data fitting by direct extension of local polynomials to bivariate splines
We present a new scattered data fitting method, where local approximating polynomials are directly extended to smooth (C 1 or C 2) splines on a uniform triangulation (the four-directional mesh). The method is based on designing appropriate minimal determining sets consisting of whole triangles of domain points for a uniformly distributed subset of . This construction allows to use discrete polynomial least squares approximations to the local portions of the data directly as parts of the approximating spline. The remaining Bernstein-Bæ#169;zier coefficients are efficiently computed by extension, i.e., using the smoothness conditions. To obtain high quality local polynomial approximations even for difficult point constellations (e.g., with voids, clusters, tracks), we adaptively choose the polynomial degrees by controlling the smallest singular value of the local collocation matrices. The computational complexity of the method grows linearly with the number of data points, which facilitates its application to large data sets. Numerical tests involving standard benchmarks as well as real world scattered data sets illustrate the approximation power of the method, its efficiency and ability to produce surfaces of high visual quality, to deal with noisy data, and to be used for surface compression
Interpolation and scattered data fitting on manifolds using projected Powell–Sabin splines
We present methods for either interpolating data or for fitting scattered data on a two-dimensional smooth manifold. The methods are based on a local bivariate Powell-Sabin interpolation scheme, and make use of a family of charts {(Uξ , ξ)}ξ∈ satisfying certain conditions of smooth dependence on ξ. If is a C2-manifold embedded into R3, then projections into tangent planes can be employed. The data fitting method is a two-stage method. We prove that the resulting function on the manifold is continuously differentiable, and establish error bounds for both methods for the case when the data are generated by a smooth function
An error analysis of probabilistic fibre tracking methods: average curves optimization
Fibre tractography using diffusion tensor imaging is a promising method for estimating the pathways of white matter tracts in the human brain. The success of fibre tracking methods ultimately depends upon the accuracy of the fibre tracking algorithms and the quality of the data. Uncertainty and its representation have an important role to play in fibre tractography methods to infer useful information from real world noisy diffusion weighted data. Probabilistic fibre tracking approaches have received considerable interest recently for resolving orientational uncertainties. In this study, an average curves approach was used to investigate the impact of SNR and tensor field geometry on the accuracy of three different types of probabilistic tracking algorithms. The accuracy was assessed using simulated data and a range of tract geometries. The average curves representations were employed to represent the optimal fibre path of probabilistic tracking curves. The results are compared with streamline tracking on both simulated and in vivo data
On variables with few occurrences in conjunctive normal forms
We consider the question of the existence of variables with few occurrences
in boolean conjunctive normal forms (clause-sets). Let mvd(F) for a clause-set
F denote the minimal variable-degree, the minimum of the number of occurrences
of variables. Our main result is an upper bound mvd(F) <= nM(surp(F)) <=
surp(F) + 1 + log_2(surp(F)) for lean clause-sets F in dependency on the
surplus surp(F).
- Lean clause-sets, defined as having no non-trivial autarkies, generalise
minimally unsatisfiable clause-sets.
- For the surplus we have surp(F) <= delta(F) = c(F) - n(F), using the
deficiency delta(F) of clause-sets, the difference between the number of
clauses and the number of variables.
- nM(k) is the k-th "non-Mersenne" number, skipping in the sequence of
natural numbers all numbers of the form 2^n - 1.
We conjecture that this bound is nearly precise for minimally unsatisfiable
clause-sets.
As an application of the upper bound we obtain that (arbitrary!) clause-sets
F with mvd(F) > nM(surp(F)) must have a non-trivial autarky (so clauses can be
removed satisfiability-equivalently by an assignment satisfying some clauses
and not touching the other clauses). It is open whether such an autarky can be
found in polynomial time.
As a future application we discuss the classification of minimally
unsatisfiable clause-sets depending on the deficiency.Comment: 14 pages. Revision contains more explanations, and more information
regarding the sharpness of the boun
Bivariate spline interpolation with optimal approximation order
Let be a triangulation of some polygonal domain f c R2 and let S9 (A) denote the space of all bivariate polynomial splines of smoothness r and degree q with respect to A. We develop the first Hermite-type interpolation scheme for S9 (A), q >_ 3r + 2, whose approximation error is bounded above by Kh4+i, where h is the maximal diameter of the triangles in A, and the constant K only depends on the smallest angle of the triangulation and is independent of near-degenerate edges and nearsingular vertices. Moreover, the fundamental functions of our scheme are minimally supported and form a locally linearly independent basis for a superspline subspace of Sr, (A). This shows that the optimal approximation order can be achieved by using minimally supported splines. Our method of proof is completely different from the quasi-interpolation techniques for the study of the approximation power of bivariate splines developed in [71 and [181
Cubic spline prewavelets on the four-directional mesh
In this paper, we design differentiable, two dimensional, piecewise polynomial cubic prewavelets of particularly small compact support. They are given in closed form, and provide stable, orthogonal decompositions of L^2(\RR^2). In particular, the splines we use in our prewavelet constructions give rise to stable bases of spline spaces that contain all cubic polynomials, whereas the more familiar box spline constructions cannot reproduce all cubic polynomials, unless resorting to a box spline of higher polynomial degree
Stable splitting of bivariate spline spaces by Bernstein-Bézier methods
We develop stable splitting of the minimal determining sets for the spaces of bivariate C1 splines on triangulations, including a modified Argyris space, Clough-Tocher, Powell-Sabin and quadrilateral macro-element spaces. This leads to the stable splitting of the corresponding bases as required in Böhmer's method for solving fully nonlinear elliptic PDEs on polygonal domains
Local RBF approximation for scattered data fitting with bivariate splines
In this paper we continue our earlier research [4] aimed at developing effcient methods of local approximation suitable for the first stage of a spline based two-stage scattered data fitting algorithm. As an improvement to the pure polynomial local approximation method used in [5], a hybrid polynomial/radial basis scheme was considered in [4], where the local knot locations for the RBF terms were selected using a greedy knot insertion algorithm. In this paper standard radial local approximations based on interpolation or least squares are considered and a faster procedure is used for knot selection, signicantly reducing the computational cost of the method. Error analysis of the method and numerical results illustrating its performance are given
- …
