215 research outputs found
Dosimetric precision of an ion beam tracking system
<p>Abstract</p> <p>Background</p> <p>Scanned ion beam therapy of intra-fractionally moving tumors requires motion mitigation. GSI proposed beam tracking and performed several experimental studies to analyse the dosimetric precision of the system for scanned carbon beams.</p> <p>Methods</p> <p>A beam tracking system has been developed and integrated in the scanned carbon ion beam therapy unit at GSI. The system adapts pencil beam positions and beam energy according to target motion.</p> <p>Motion compensation performance of the beam tracking system was assessed by measurements with radiographic films, a range telescope, a 3D array of 24 ionization chambers, and cell samples for biological dosimetry. Measurements were performed for stationary detectors and moving detectors using the beam tracking system.</p> <p>Results</p> <p>All detector systems showed comparable data for a moving setup when using beam tracking and the corresponding stationary setup. Within the target volume the mean relative differences of ionization chamber measurements were 0.3% (1.5% standard deviation, 3.7% maximum). Film responses demonstrated preserved lateral dose gradients. Measurements with the range telescope showed agreement of Bragg peak depth under motion induced range variations. Cell survival experiments showed a mean relative difference of -5% (-3%) between measurements and calculations within the target volume for beam tracking (stationary) measurements.</p> <p>Conclusions</p> <p>The beam tracking system has been successfully integrated. Full functionality has been validated dosimetrically in experiments with several detector types including biological cell systems.</p
Cytochrome-P450 enzymes and autoimmunity: expansion of the relationship and introduction of free radicals as the link
The Cytochrome-P-450 enzymes (CYP) are among the most important xenobiotic-metabolizing enzymes, which produce reactive oxygen species (ROS) as the result of metabolizing xenobiotics
Unraveling the Design Principle for Motif Organization in Signaling Networks
Cellular signaling networks display complex architecture. Defining the design principle of this architecture is crucial for our understanding of various biological processes. Using a mathematical model for three-node feed-forward loops, we identify that the organization of motifs in specific manner within the network serves as an important regulator of signal processing. Further, incorporating a systemic stochastic perturbation to the model we could propose a possible design principle, for higher-order organization of motifs into larger networks in order to achieve specific biological output. The design principle was then verified in a large, complex human cancer signaling network. Further analysis permitted us to classify signaling nodes of the network into robust and vulnerable nodes as a result of higher order motif organization. We show that distribution of these nodes within the network at strategic locations then provides for the range of features displayed by the signaling network
Tranexamic acid for the prevention of postpartum bleeding in women with anaemia: study protocol for an international, randomised, double-blind, placebo-controlled trial.
BACKGROUND: Postpartum haemorrhage (PPH) is responsible for about 100,000 maternal deaths every year, most of which occur in low- and middle-income countries. Tranexamic acid (TXA) reduces bleeding by inhibiting the enzymatic breakdown of fibrin blood clots. TXA decreases blood loss in surgery and reduces death due to bleeding after trauma. When given within 3 h of birth, TXA reduces deaths due to bleeding in women with PPH. However, for many women, treatment of PPH is too late to prevent death. Over one third of pregnant women in the world are anaemic and many are severely anaemic. These women have an increased risk of PPH and suffer more severe outcomes if PPH occurs. There is an urgent need to identify a safe and effective way to reduce postpartum bleeding in anaemic women. METHODS/DESIGN: The WOMAN-2 trial is an international, multicentre, randomised, double-blind, placebo-controlled trial to quantify the effects of TXA on postpartum bleeding in women with moderate or severe anaemia. Ten thousand women with moderate or severe anaemia who have given birth vaginally will be randomised to receive 1 g of TXA or matching placebo by intravenous injection immediately (within 15 min) after the umbilical cord is cut or clamped. The primary outcome is the proportion of women with a clinical diagnosis of primary PPH. The cause of PPH will be described. Data on maternal health and wellbeing, maternal blood loss and its consequences, and other health outcomes will be collected as secondary outcomes. The main analyses will be on an 'intention-to-treat' basis, irrespective of whether the allocated treatment was received. Results will be presented as appropriate effect estimates with a measure of precision (95% confidence intervals). Subgroup analyses will be based on the severity of anaemia (moderate versus severe) and type of labour (induced or augmented versus spontaneous). A study with 10,000 patients will have over 90% power to detect a 25% relative reduction from 10 to 7.5% in PPH. The trial will be conducted in hospitals in Africa and Asia. DISCUSSION: The WOMAN-2 trial should provide reliable evidence for the effects of TXA for preventing postpartum bleeding in women with anaemia. TRIAL REGISTRATION: ISRCTN, ISRCTN62396133 . Registered on 7 December 2017; ClincalTrials.gov, ID: NCT03475342 . Registered on 23 March 2018
A Novel High-Throughput Vaccinia Virus Neutralization Assay and Preexisting Immunity in Populations from Different Geographic Regions in China
Background: Pre-existing immunity to Vaccinia Tian Tan virus (VTT) resulting from a large vaccination campaign against smallpox prior to the early 1980s in China, has been a major issue for application of VTT-vector based vaccines. It is essential to establish a sensitive and high-throughput neutralization assay to understand the epidemiology of Vaccinia-specific immunity in current populations in China. Methodology/Principal Findings: A new anti-Vaccinia virus (VACV) neutralization assay that used the attenuated replication-competent VTT carrying the firefly luciferase gene of Photinus pyralis (rTV-Fluc) was established and standardized for critical parameters that included the choice of cell line, viral infection dose, and the infection time. The current study evaluated the maintenance of virus-specific immunity after smallpox vaccination by conducting a non-randomized, crosssectional analysis of antiviral antibody-mediated immune responses in volunteers examined 30–55 years after vaccination. The rTV-Fluc neutralization assay was able to detect neutralizing antibodies (NAbs) against Vaccinia virus without the ability to differentiate strains of Vaccinia virus. We showed that the neutralizing titers measured by our assay were similar to those obtained by the traditional plaque reduction neutralization test (PRNT). Using this assay, we found a low prevalence of NAb to VTT (7.6%) in individuals born before 1980 from Beijing and Anhui provinces in China, and when present, anti-VTT NAb titers were low. No NAbs were detected in all 222 samples from individuals born after 1980. There was no significan
Is There a Place for Dietary Fiber Supplements in Weight Management?
Inadequate dietary fiber intake is common in modern diets, especially in children. Epidemiological and experimental evidence point to a significant association between a lack of fiber intake and ischemic heart disease, stroke atherosclerosis, type 2 diabetes, overweight and obesity, insulin resistance, hypertension, dyslipidemia, as well as gastrointestinal disorders such as diverticulosis, irritable bowel disease, colon cancer, and cholelithiasis. The physiological effects of fiber relate to the physical properties of volume, viscosity, and water-holding capacity that the fiber imparts to food leading to important influences over the energy density of food. Beyond these physical properties, fiber directly impacts a complex array of microbiological, biochemical, and neurohormonal effects directly through modification of the kinetics of digestion and through its metabolism into constituents such as short chain fatty acids, which are both energy substrates and important enteroendocrine ligands. Of particular interest to clinicians is the important role dietary fiber plays in glucoregulation, appetite, and satiety. Supplementation of the diet with highly functional fibers may prove to play an important role in long-term obesity management
Emerging role of insulin with incretin therapies for management of type 2 diabetes
Type 2 diabetes mellitus (T2DM) is a progressive disease warranting intensification of treatment, as beta-cell function declines over time. Current treatment algorithms recommend metformin as the first-line agent, while advocating the addition of either basal-bolus or premixed insulin as the final level of intervention. Incretin therapy, including incretin mimetics or enhancers, are the latest group of drugs available for treatment of T2DM. These agents act through the incretin axis, are currently recommended as add-on agents either as second-or third-line treatment, without concurrent use of insulin. Given the novel role of incretin therapy in terms of reducing postprandial hyperglycemia, and favorable effects on weight with reduced incidence of hypoglycemia, we explore alternative options for incretin therapy in T2DM management. Furthermore, as some evidence alludes to incretins potentially increasing betacell mass and altering disease progression, we propose introducing these agents earlier in the treatment algorithm. In addition, we suggest the concurrent use of incretins with insulin, given the favorable effects especially in relation to weight gain
Anti-relapse neurons in the infralimbic cortex of rats drive relapse-suppression by drug omission cues
Drug addiction is a chronic relapsing disorder of compulsive drug use. Studies of the neurobehavioral factors that promote drug relapse have yet to produce an effective treatment. Here we take a different approach and examine the factors that suppress – rather than promote – relapse. Adapting Pavlovian procedures to suppress operant drug response, we determined the anti-relapse action of environmental cues that signal drug omission (unavailability) in rats. Under laboratory conditions linked to compulsive drug use and heightened relapse risk, drug omission cues suppressed three major modes of relapse-promotion (drug-predictive cues, stress, and drug exposure) for cocaine and alcohol. This relapse-suppression is partially driven by omission cue-reactive neurons, which constitute small subsets of glutamatergic and GABAergic cells, in the infralimbic cortex. Future studies of such neural activity-based cellular units (neuronal ensembles/memory engram cells) for relapse-suppression can be used to identify alternate targets for addiction medicine through functional characterization of anti-relapse mechanisms
An overview of the recent developments on fructooligosaccharide production and applications
Over the past years, many researchers have suggested
that deficiencies in the diet can lead to disease states
and that some diseases can be avoided through an adequate
intake of relevant dietary components. Recently, a great interest
in dietary modulation of the human gut has been registered.
Prebiotics, such as fructooligosaccharides (FOS), play a key
role in the improvement of gut microbiota balance and in
individual health. FOS are generally used as components of
functional foods, are generally regarded as safe (generally
recognized as safe status—from the Food and Drug Administration,
USA), and worth about 150€ per kilogram. Due to
their nutrition- and health-relevant properties, such as moderate
sweetness, low carcinogenicity, low calorimetric value,
and low glycemic index, FOS have been increasingly used
by the food industry. Conventionally, FOS are produced
through a two-stage process that requires an enzyme production
and purification step in order to proceed with the chemical
reaction itself. Several studies have been conducted on the
production of FOS, aiming its optimization toward the development
of more efficient production processes and their potential
as food ingredients. The improvement of FOS yield and
productivity can be achieved by the use of different fermentative
methods and different microbial sources of FOS producing
enzymes and the optimization of nutritional and
culture parameter; therefore, this review focuses on the latest
progresses in FOS research such as its production, functional
properties, and market data.Agencia de Inovacao (AdI)-Project BIOLIFE reference PRIME 03/347. Ana Dominguez acknowledges Fundacao para a Ciencia e a Tecnologia, Portugal, for her PhD grant reference SFRH/BD/23083/2005
- …