294 research outputs found

    T4-induced RNA ligase joins single-stranded oligoribonucleotides.

    Full text link

    Lax pair and Darboux transformation of noncommutative U(N) principal chiral model

    Get PDF
    We present a noncommutative generalization of Lax formalism of U(N) principal chiral model in terms of a one-parameter family of flat connections. The Lax formalism is further used to derive a set of parametric noncommutative B\"{a}cklund transformation and an infinite set of conserved quantities. From the Lax pair, we derive a noncommutative version of the Darboux transformation of the model.Comment: 1+20 page

    Moduli-Space Dynamics of Noncommutative Abelian Sigma-Model Solitons

    Get PDF
    In the noncommutative (Moyal) plane, we relate exact U(1) sigma-model solitons to generic scalar-field solitons for an infinitely stiff potential. The static k-lump moduli space C^k/S_k features a natural K"ahler metric induced from an embedding Grassmannian. The moduli-space dynamics is blind against adding a WZW-like term to the sigma-model action and thus also applies to the integrable U(1) Ward model. For the latter's two-soliton motion we compare the exact field configurations with their supposed moduli-space approximations. Surprisingly, the two do not match, which questions the adiabatic method for noncommutative solitons.Comment: 1+15 pages, 2 figures; v2: reference added, to appear in JHE

    Diffusion over a saddle with a Langevin equation

    Get PDF
    The diffusion problem over a saddle is studied using a multi-dimensional Langevin equation. An analytical solution is derived for a quadratic potential and the probability to pass over the barrier deduced. A very simple solution is given for the one dimension problem and a general scheme is shown for higher dimensions.Comment: 13 pages, use revTeX, to appear in Phys. Rev. E6

    Hydrodynamic modes in a trapped Bose gas above the Bose-Einstein transition

    Full text link
    We discuss the collective modes of a trapped Bose gas in the hydrodynamic regime where atomic collisions ensure local thermal equilibrium for the distribution function. Starting from the conservation laws, in the linearized limit we derive a closed equation for the velocity fluctuations in a trapped Bose gas above the Bose-Einstein transition temperature. Explicit solutions for a parabolic trap are given. We find that the surface modes have the same dispersion relation as the one recently obtained by Stringari for the oscillations of the condensate at T=0T=0 within the Thomas-Fermi approximation. Results are also given for the monopole ``breathing'' mode as well as for the m=0m=0 excitations which result from the coupling of the monopole and quadrupole modes in an anisotropic parabolic well.Comment: 4 pages, no figure, submitted to Phys. Rev. Let

    Instantons and Yang-Mills Flows on Coset Spaces

    Full text link
    We consider the Yang-Mills flow equations on a reductive coset space G/H and the Yang-Mills equations on the manifold R x G/H. On nonsymmetric coset spaces G/H one can introduce geometric fluxes identified with the torsion of the spin connection. The condition of G-equivariance imposed on the gauge fields reduces the Yang-Mills equations to phi^4-kink equations on R. Depending on the boundary conditions and torsion, we obtain solutions to the Yang-Mills equations describing instantons, chains of instanton-anti-instanton pairs or modifications of gauge bundles. For Lorentzian signature on R x G/H, dyon-type configurations are constructed as well. We also present explicit solutions to the Yang-Mills flow equations and compare them with the Yang-Mills solutions on R x G/H.Comment: 1+12 page

    Instantons and Killing spinors

    Get PDF
    We investigate instantons on manifolds with Killing spinors and their cones. Examples of manifolds with Killing spinors include nearly Kaehler 6-manifolds, nearly parallel G_2-manifolds in dimension 7, Sasaki-Einstein manifolds, and 3-Sasakian manifolds. We construct a connection on the tangent bundle over these manifolds which solves the instanton equation, and also show that the instanton equation implies the Yang-Mills equation, despite the presence of torsion. We then construct instantons on the cones over these manifolds, and lift them to solutions of heterotic supergravity. Amongst our solutions are new instantons on even-dimensional Euclidean spaces, as well as the well-known BPST, quaternionic and octonionic instantons.Comment: 40 pages, 2 figures v2: author email addresses and affiliations adde

    Towards Rigorous Derivation of Quantum Kinetic Equations

    Full text link
    We develop a rigorous formalism for the description of the evolution of states of quantum many-particle systems in terms of a one-particle density operator. For initial states which are specified in terms of a one-particle density operator the equivalence of the description of the evolution of quantum many-particle states by the Cauchy problem of the quantum BBGKY hierarchy and by the Cauchy problem of the generalized quantum kinetic equation together with a sequence of explicitly defined functionals of a solution of stated kinetic equation is established in the space of trace class operators. The links of the specific quantum kinetic equations with the generalized quantum kinetic equation are discussed.Comment: 25 page

    Yang-Mills instantons and dyons on homogeneous G_2-manifolds

    Get PDF
    We consider Lie G-valued Yang-Mills fields on the space R x G/H, where G/H is a compact nearly K"ahler six-dimensional homogeneous space, and the manifold R x G/H carries a G_2-structure. After imposing a general G-invariance condition, Yang-Mills theory with torsion on R x G/H is reduced to Newtonian mechanics of a particle moving in R^6, R^4 or R^2 under the influence of an inverted double-well-type potential for the cases G/H = SU(3)/U(1)xU(1), Sp(2)/Sp(1)xU(1) or G_2/SU(3), respectively. We analyze all critical points and present analytical and numerical kink- and bounce-type solutions, which yield G-invariant instanton configurations on those cosets. Periodic solutions on S^1 x G/H and dyons on iR x G/H are also given.Comment: 1+26 pages, 14 figures, 6 miniplot

    Collective oscillations of a classical gas confined in harmonic traps

    Full text link
    Starting from the Boltzmann equation we calculate the frequency and the damping of the monopole and quadrupole oscillations of a classical gas confined in an harmonic potential. The collisional term is treated in the relaxation time approximation and a gaussian ansatz is used for its evaluation. Our approach provides an explicit description of the transition between the hydrodynamic and collisionless regimes in both spherical and deformed traps. The predictions are compared with the results of a numerical simulation.Comment: 6 pages, revtex, 2 figures include
    corecore