118 research outputs found
The NIKA2 instrument, a dual-band kilopixel KID array for millimetric astronomy
NIKA2 (New IRAM KID Array 2) is a camera dedicated to millimeter wave
astronomy based upon kilopixel arrays of Kinetic Inductance Detectors (KID).
The pathfinder instrument, NIKA, has already shown state-of-the-art detector
performance. NIKA2 builds upon this experience but goes one step further,
increasing the total pixel count by a factor 10 while maintaining the
same per pixel performance. For the next decade, this camera will be the
resident photometric instrument of the Institut de Radio Astronomie
Millimetrique (IRAM) 30m telescope in Sierra Nevada (Spain). In this paper we
give an overview of the main components of NIKA2, and describe the achieved
detector performance. The camera has been permanently installed at the IRAM 30m
telescope in October 2015. It will be made accessible to the scientific
community at the end of 2016, after a one-year commissioning period. When this
happens, NIKA2 will become a fundamental tool for astronomers worldwide.Comment: Proceedings of the 16th Low Temperature Detectors workshop. To be
published in the Journal of Low Temperature Physics. 8 pages, 4 figures, 1
tabl
Muon-induced background in the EDELWEISS dark matter search
A dedicated analysis of the muon-induced background in the EDELWEISS dark
matter search has been performed on a data set acquired in 2009 and 2010. The
total muon flux underground in the Laboratoire Souterrain de Modane (LSM) was
measured to be \,muons/m/d. The
modular design of the muon-veto system allows the reconstruction of the muon
trajectory and hence the determination of the angular dependent muon flux in
LSM. The results are in good agreement with both MC simulations and earlier
measurements. Synchronization of the muon-veto system with the phonon and
ionization signals of the Ge detector array allowed identification of
muon-induced events. Rates for all muon-induced events and of WIMP-like events were extracted. After
vetoing, the remaining rate of accepted muon-induced neutrons in the
EDELWEISS-II dark matter search was determined to be at 90%\,C.L. Based on
these results, the muon-induced background expectation for an anticipated
exposure of 3000\,\kgd\ for EDELWEISS-3 is
events.Comment: 21 pages, 16 figures, Accepted for publication in Astropart. Phy
A wide field-of-view low-resolution spectrometer at APEX: Instrument design and scientific forecast
Context. Characterising the large-scale structure in the Universe from present times to the high redshift epoch of reionisation is essential to constraining the cosmology, the history of star formation, and reionisation, to measuring the gas content of the Universe, and to obtaining a better understanding of the physical processes that drive galaxy formation and evolution. Using the integrated emission from unresolved galaxies or gas clouds, line intensity mapping (LIM) provides a new observational window to measure the larger properties of structures. This very promising technique motivates the community to plan for LIM experiments. Aims. We describe the development of a large field-of-view instrument, named CONCERTO (for CarbON CII line in post-rEionisation and ReionisaTiOn epoch), operating in the range 130-310 GHz from the APEX 12-m telescope (5100 m above sea level). CONCERTO is a low-resolution spectrometer based on the lumped element kinetic inductance detectors (LEKID) technology. Spectra are obtained using a fast Fourier transform spectrometer (FTS), coupled to a dilution cryostat with a base temperature of 0.1 K. Two two kilo-pixel arrays of LEKID are mounted inside the cryostat that also contains the cold optics and the front-end electronics. Methods. We present, in detail, the technological choices leading to the instrumental concept, together with the design and fabrication of the instrument and preliminary laboratory tests on the detectors. We also give our best estimates for CONCERTO sensitivity and give predictions for two of the main scientific goals of CONCERTO, that is, a [CII]-intensity mapping survey and observations of galaxy clusters. Results. We provide a detailed description of the instrument design. Based on realistic comparisons with existing instruments developed by our group (NIKA, NIKA2, and KISS), and on the laboratory characterisation of our detectors, we provide an estimate for CONCERTO sensitivity on the sky. Finally, we describe, in detail, two of the main scientific goals offered by CONCERTO at APEX
Assessment of Yellow Fever Epidemic Risk: An Original Multi-criteria Modeling Approach
This article describes the use of an original modeling approach to assess the risk of yellow fever (YF) epidemics. YF is a viral hemorrhagic fever responsible in past centuries for devastating outbreaks. Since the 1930s, a vaccine has been available that protects the individual for at least 10 years, if not for life. However, immunization of populations in African countries was gradually discontinued after the 1960s. With the decrease in immunity against YF in African populations the disease reemerged in the 1980s. In 2005, WHO, UNICEF, and the GAVI Alliance decided to support preventive vaccination of at-risk populations in West African endemic countries in order to tackle the reemergence of YF and reduce the risk of urban YF outbreaks. Financial resources were made available to scale up a global YF vaccine stockpile and to support countries with limited resources in the management of preventive vaccination campaigns. This article describes the process we used to determine the most at-risk populations using a mathematical model to prioritize targeted immunization campaigns. We believe that this approach could be useful for other diseases for which decision making process is difficult because of limited data availability, complex risk variables, and a need for rapid decisions and implementation
First demonstration of 30 eVee ionization energy resolution with Ricochet germanium cryogenic bolometers
The future Ricochet experiment aims to search for new physics in the
electroweak sector by measuring the Coherent Elastic Neutrino-Nucleus
Scattering process from reactor antineutrinos with high precision down to the
sub-100 eV nuclear recoil energy range. While the Ricochet collaboration is
currently building the experimental setup at the reactor site, it is also
finalizing the cryogenic detector arrays that will be integrated into the
cryostat at the Institut Laue Langevin in early 2024. In this paper, we report
on recent progress from the Ge cryogenic detector technology, called the
CryoCube. More specifically, we present the first demonstration of a 30~eVee
(electron equivalent) baseline ionization resolution (RMS) achieved with an
early design of the detector assembly and its dedicated High Electron Mobility
Transistor (HEMT) based front-end electronics. This represents an order of
magnitude improvement over the best ionization resolutions obtained on similar
heat-and-ionization germanium cryogenic detectors from the EDELWEISS and
SuperCDMS dark matter experiments, and a factor of three improvement compared
to the first fully-cryogenic HEMT-based preamplifier coupled to a CDMS-II
germanium detector. Additionally, we discuss the implications of these results
in the context of the future Ricochet experiment and its expected background
mitigation performance.Comment: 10 pages, 5 figures, 1 tabl
Fast neutron background characterization of the future Ricochet experiment at the ILL research nuclear reactor
The future Ricochet experiment aims at searching for new physics in the
electroweak sector by providing a high precision measurement of the Coherent
Elastic Neutrino-Nucleus Scattering (CENNS) process down to the sub-100 eV
nuclear recoil energy range. The experiment will deploy a kg-scale
low-energy-threshold detector array combining Ge and Zn target crystals 8.8
meters away from the 58 MW research nuclear reactor core of the Institut Laue
Langevin (ILL) in Grenoble, France. Currently, the Ricochet collaboration is
characterizing the backgrounds at its future experimental site in order to
optimize the experiment's shielding design. The most threatening background
component, which cannot be actively rejected by particle identification,
consists of keV-scale neutron-induced nuclear recoils. These initial fast
neutrons are generated by the reactor core and surrounding experiments
(reactogenics), and by the cosmic rays producing primary neutrons and
muon-induced neutrons in the surrounding materials. In this paper, we present
the Ricochet neutron background characterization using He proportional
counters which exhibit a high sensitivity to thermal, epithermal and fast
neutrons. We compare these measurements to the Ricochet Geant4 simulations to
validate our reactogenic and cosmogenic neutron background estimations.
Eventually, we present our estimated neutron background for the future Ricochet
experiment and the resulting CENNS detection significance.Comment: 14 pages, 14 figures, 1 tabl
HIV interactions with monocytes and dendritic cells: viral latency and reservoirs
HIV is a devastating human pathogen that causes serious immunological diseases in humans around the world. The virus is able to remain latent in an infected host for many years, allowing for the long-term survival of the virus and inevitably prolonging the infection process. The location and mechanisms of HIV latency are under investigation and remain important topics in the study of viral pathogenesis. Given that HIV is a blood-borne pathogen, a number of cell types have been proposed to be the sites of latency, including resting memory CD4+ T cells, peripheral blood monocytes, dendritic cells and macrophages in the lymph nodes, and haematopoietic stem cells in the bone marrow. This review updates the latest advances in the study of HIV interactions with monocytes and dendritic cells, and highlights the potential role of these cells as viral reservoirs and the effects of the HIV-host-cell interactions on viral pathogenesis
«La relation de limitation et dâexception dans le français dâaujourdâhui : exceptĂ©, sauf et hormis comme pivots dâune relation algĂ©brique »
Lâanalyse des emplois prĂ©positionnels et des emplois conjonctifs dâ âexceptĂ©â, de âsaufâ et dâ âhormisâ permet dâenvisager les trois prĂ©positions/conjonctions comme le pivot dâun binĂŽme, comme la plaque tournante dâune structure bipolaire. PlacĂ©es au milieu du binĂŽme, ces prĂ©positions sont forcĂ©es par leur sĂ©mantisme originaire dĂ»ment mĂ©taphorisĂ© de jouer le rĂŽle de marqueurs dâinconsĂ©quence systĂ©matique entre lâĂ©lĂ©ment se trouvant Ă leur gauche et celui qui se trouve Ă leur droite. Lâopposition qui surgit entre les deux Ă©lĂ©ments nâest donc pas une incompatibilitĂ© naturelle, intrinsĂšque, mais extrinsĂšque, induite. Dans la plupart des cas (emplois limitatifs), cette opposition prend la forme dâun rapport entre une « classe » et le « membre (soustrait) de la classe », ou bien entre un « tout » et une « partie » ; dans dâautres (emplois exceptifs), cette opposition se manifeste au contraire comme une attaque de front portĂ©e par un « tout » Ă un autre « tout ». De plus, lâinconsĂ©quence induite mise en place par la prĂ©position/conjonction paraĂźt, en principe, tout Ă fait insurmontable. Dans lâassertion « les Ă©cureuils vivent partout, sauf en Australie » (que lâon peut expliciter par « Les Ă©cureuils vivent partout, sauf [quâils ne vivent pas] en Australie »), la prĂ©position semble en effet capable dâimpliquer le prĂ©dicat principal avec signe inverti, et de bĂątir sur une telle implication une sorte de sous Ă©noncĂ© qui, Ă la rigueur, est totalement inconsĂ©quent avec celui qui le prĂ©cĂšde (si « les Ă©cureuils ne vivent pas en Australie », le fait quâils « vivent partout » est faux). NĂ©anmoins, lâanalyse montre quâalors que certaines de ces oppositions peuvent enfin ĂȘtre dĂ©passĂ©es, dâautres ne le peuvent pas. Câest, respectivement, le cas des relations limitatives et des relations exceptives. La relation limitative, impliquant le rapport « tout » - « partie », permet de rĂ©soudre le conflit dans les termes dâune somme algĂ©brique entre deux sous Ă©noncĂ©s pourvus de diffĂ©rent poids informatif et de signe contraire. Les valeurs numĂ©riques des termes de la somme Ă©tant dĂ©sĂ©quilibrĂ©es, le rĂ©sultat est toujours autre que zĂ©ro. La relation exceptive, au contraire, qui nâimplique pas le rapport « tout » - « partie », nâest pas capable de rĂ©soudre le conflit entre deux sous Ă©noncĂ©s pourvus du mĂȘme poids informatif et en mĂȘme temps de signe contraire : les valeurs numĂ©riques des termes de la somme Ă©tant symĂ©triques et Ă©gales, le rĂ©sultat sera toujours Ă©quivalent Ă zĂ©ro
SNW1 Is a Critical Regulator of Spatial BMP Activity, Neural Plate Border Formation, and Neural Crest Specification in Vertebrate Embryos
In frog and fish embryos, SNW1 is a protein required for the spatio-temporal activity of BMP signaling necessary for neural plate border formation and specification of neural crest tissue
Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications
Coherent elastic neutrino-nucleus scattering (CENS) is a process in which neutrinos scatter on a nucleus which acts as a single particle. Though the total cross section is large by neutrino standards, CENS has long proven difficult to detect, since the deposited energy into the nucleus is keV. In 2017, the COHERENT collaboration announced the detection of CENS using a stopped-pion source with CsI detectors, followed up the detection of CENS using an Ar target. The detection of CENS has spawned a flurry of activities in high-energy physics, inspiring new constraints on beyond the Standard Model (BSM) physics, and new experimental methods. The CENS process has important implications for not only high-energy physics, but also astrophysics, nuclear physics, and beyond. This whitepaper discusses the scientific importance of CENS, highlighting how present experiments such as COHERENT are informing theory, and also how future experiments will provide a wealth of information across the aforementioned fields of physics
- âŠ